
Received: 19 Oct 2024 Revised: 18 Dec 2024 Accepted: 21 Dec 2024 Published: 30 Dec 2024

Volume 2(2) Pages 107-122 DOI: https://doi.org/10.56279/jicts.v2i2.125

JICTS
Journal of ICT Systems

107

 2024 jicts.udsm.ac.tz

Fog-Based Computing Architecture for Enhancing

Secondary Distribution Grid Services Management
Gilbert M. Gilbert a,1, Shililiandumi Naimanb,

aDepartment of Information Systems and Technology, The University of Dodoma, Dodoma, Tanzania
bDepartment of Electronics and Telecommunications Engineering, University of Dar es Salaam, Dar es Salaam, Tanzania

1. Introduction

The current electric power grid systems face

growing economic and environmental concerns,

prompting the need for more efficient and

sustainable solutions [1]. Smart grid architectures

have emerged as a potential replacement,

leveraging Information and Communication

Technologies (ICT) to offer a range of intelligent

services. These services include the integration of

renewable energy sources, load monitoring and

control, and management of power generation and

consumption [2]. However, the complexity of smart

grid systems arises from the multitude of devices

and applications that are interconnected through

two-way communication networks, posing

Keywords

Fog Computing

Edge Node

Computing Architecture

Secondary Distribution

Fault Management

1Corresponding author

Email: gilbert.gilbert@udom.ac.tz

Abstract

In monitoring the health of secondary distribution networks (SDNs),

power utility providers have faced an increasing need to deploy

intelligent solutions with affordable sensing and data-driven

technologies. Existing manual-based approaches are not capable of

collecting large volumes of real-time operational data to achieve

significant monitoring of the SDN network for reliable power

distribution. Effective monitoring would require real-time sensing,

scalable high-performance computing, and appropriate grid-based

applications designed for efficient data processing. This paper

presents a computing architecture for grid services monitoring to

enhance real-time fault management in SDN. The architecture

leverages wireless sensor networks, a hybrid cloud-fog computing

architecture, and a heuristic-based application coordination

mechanism to efficiently manage grid applications. Experimental

results indicate that coordination mechanism improved workload

distribution by up to 70% in fog nodes and to 40% in the cloud. A

fog-based architecture provided low latency improvements of 70%

compared with that of cloud-only architectures. This signifies that

most of the data processing was pushed to the local fog nodes, which

is crucial for distributed fault management applications.

Funding information

This work received partial funds from

the University of Dar es Salaam,

Tanzania.

https://doi.org/XXXX/XXXX
mailto:jicts@udsm.ac.tz
mailto:gilbert.gilbert@udom.ac.tz

 JICTS

Gilbert and Naiman Volume 2(2) Pages 107-122

108

 2024 jicts.udsm.ac.tz

significant challenges for effective control and

management [3].

As smart grid technologies are gradually

integrated into distribution networks, which

represent the largest segment of the entire power

system, the management of both soft and hard

assets becomes increasingly difficult [4, 5]. These

challenges are exacerbated by the vast geographical

coverage and size of the networks. The architecture

of a smart grid demands an extensive deployment

of sensors and Internet of Things (IoT) devices that

generate massive volumes of data. This large-scale

deployment of IoT devices and sensors leads to the

typical "big data" issues of volume, velocity, and

variety. Additionally, these data streams introduce

requirements for accuracy, security, Quality of

Service (QoS), and user expectations, while

ensuring operational cost efficiency. The generated

data are essential for effective grid services and

applications management, but they also demand

robust computing architectures for data processing,

analysis, and storage.

Cloud computing has become the de facto

standard for supporting IoT-enabled smart grid

solutions, providing scalability, reliable data

analysis, and operational efficiency. However,

centralizing cloud facilities geographically

necessitates multi-hop transmission of data

collected from sensors to the cloud systems for

processing. This setup negatively impacts latency-

sensitive applications, network bandwidth, and data

locality, leading to delays, security issues, and

inefficiencies[6, 7].

In response to these challenges, fog (edge)

computing has emerged as an effective platform

that bridges the gap between cloud and IoT [8]. By

leveraging lightweight and customizable

computing resources located closer to the data

source, fog computing reduces the need for multi-

hop data communication. Typical edge computing

devices, such as switches, routers, and low-profile

computers are integrated with the necessary

computational infrastructure and management

models to support local data processing. This

architecture not only reduces latency but also

enhances service flexibility, security and

distributing resource demands more effectively.

Although fog computing nodes have limited

computational power, they are customizable to

address specific application needs. Additionally,

fog computing enhances data privacy by enabling

local storage of sensitive information instead of

transmitting them to centralized data centers.

Despite its benefits, fog computing faces

challenges in ensuring seamless interoperability

and coordination between cloud and fog services

[9]. There is a need for techniques that facilitate the

migration of secondary distribution network (SDN)

grid services and applications between cloud and

fog nodes without compromising system

performance, while also addressing the inherent

architectural differences. The focus is on

identifying a design capable of supporting seamless

application migration while maintaining the

required performance levels. To achieve this,

monitoring the resource usage of each grid

application/service and identifying appropriate

triggers for migration decisions are essential. This

will ensure computing resources between the fog-

cloud continuum are well utilized.

This paper introduces a design for grid

applications/services monitoring platform that

leverages fog computing to address the limitations

of cloud-only architectures in managing faults in

SDNs. The proposed architecture integrates

wireless sensor networks fog-based computing and

an application coordination algorithm to support

real-time monitoring and management of grid

services, particularly for fault management. A

proof-of-concept prototype (Figure 3) is developed

to demonstrate the platform’s effectiveness,

mailto:jicts@udsm.ac.tz

 JICTS

Gilbert and Naiman Volume 2(2) Pages 107-122

109

 2024 jicts.udsm.ac.tz

focusing on workload distribution, latency

reduction, and improved fault detection in SDNs.

2. Literature Review

A fault in an electric power system is an

abnormal condition that can be produced by a

variety of factors, such as weather, human error,

fire, and hardware problems. Faults can include

open circuits and short circuits, among other things.

Short circuits are the most common problems in

distribution networks, and they can be diagnosed by

analyzing phase currents [10]. Furthermore,

depending on whether the faults occur on

distribution lines or transformer substations, they

can be classed as overcurrent, over/undervoltage,

over-temperature, overloading, low oil level, or

earth faults. Based on the severity of the fault and

the duration of the problem, it may lead to poor

power quality, unreliable supply, reduced

consumer comfort, and potential equipment

damage or safety hazards.

Fault detection automation in electrical power

systems is one of the most effective technologies

for reducing outage times. There are significant

works that address fault detection and clearance in

transmission and primary distribution networks

using centralized systems, such as Supevisory

Control and Data Acquisition (SCADA) and

Distributed Management Systems (DMS) [11].

However, because of the complexity and

pervasiveness of SDN, more research leveraging

distributed architecture is required to overcome

network fault clearance issues. Management of

faults in SDNs, including the Tanzanian network,

relies on customer call information or virtual

inspections for fault identification, which leads to

longer duration for resolving problems [12].

A work by Gilbert et al. [6] and Gooi et al. [13]

have thoroughly reviewed the application

potentials of using edge computing and intelligence

in power systems. A study by Mei et al. [14]

discusses edge-cloud collaboration for fast and

accurate fault detection in Low Voltage (LV)

distribution networks using deep learning

techniques. It does not detail much about the

architecture design. Similarly, a study done by

Sodin et al. [15] demonstrated the use of a hybrid

edge-cloud approach in fault management by

successfully utilizing Phasor Measurement Unit

(PMU) and Long-Term Evolution (LTE)

technologies. However, it did not deal with grid

application/service coordination for resource

management. Further, Huo et al. [16] looked into

proposing wavelet transform applications in fault

detection based on edge computing. Issues of

application/services management were not

discussed. A study by Netsanet et al. [17] proposes

a cognitive edge computing-based fault detection

strategy using support vector machines (SVM) for

detection and long short-term memory (LSTM)

models for fault localization. It leverages a

distributed architecture to improve real-time

detection accuracy and reduce fault-clearing times

in active distribution networks. This work

addresses challenges related to adaptive settings,

high impedance faults, and complex grid conditions

without relying heavily on centralized systems. The

study heavily relies on machine learning models,

which require significant training data and

computational resources for real-world

applications. It does not address grid service

coordination, limiting scalability for large SDNs.

Fog nodes may suffer from resource constraints

during large-scale deployments in complex

environments.

A study by Alhanaf et al.[18] introduces fault

detection methods leveraging artificial neural

networks and one-dimensional convolutional

neural networks for smart grids. It achieves

impressive accuracy in detecting, classifying, and

locating faults using sensor data, such as voltage

and current signals. However, it has limited

applicability to complex grid environments,

including SDNs.

mailto:jicts@udsm.ac.tz

 JICTS

Gilbert and Naiman Volume 2(2) Pages 107-122

110

 2024 jicts.udsm.ac.tz

Smart grid services involve several applications

that take advantage of the resources in cloud and

fog systems. Since these applications have differing

computing needs and priorities, there is a need for

mechanisms to coordinate their processing. A

comprehensive review by Li et al. [19] provides the

status of edge-cloud systems in smart grids,

detailing architectures and applications, including

fault management. It highlights challenges, such as

latency, dynamic resource allocation, and

integration complexity. This study focuses heavily

on theoretical architecture without practical case

studies or real-world validations. A work by

Santoro et al. [20] considered a platform for

workload orchestration in a fog computing

environment by offering the functionality of

negotiation, scheduling, and workload placement,

taking into account traditional requirements (e.g.,

RAM, CPU, Storage size). Li et al. used neural

networks to orchestrate resources between cloud

and fog systems for smart grid fault detection [21].

These solutions did not consider environmental

complexities, such as those found in SDNs.

There are various application resource

monitoring systems. For instance, Nagios1,

Datadog2, Prometheus3 and Dargos [22] are used

for monitoring applications, services, operating

systems, and network protocols across several

platforms. Choosing the right tool depends on

individual project needs, hence a lot of

customization is needed.

There are still issues related to limited practical

SDN fault management solutions, grid services

coordination for resource management, and

complexities of SDN. This work seeks to contribute

to enhancing fault detection accuracy, improving

system reliability, and ensuring efficient

orchestration of grid services in complex SDNs.

1 https://www.nagios.org/

3. Cloud-Fog Application Monitoring

Architecture

To efficiently manage, monitor, and optimize

applications deployed in distributed computing in

the SDN environment that spans both cloud and fog

layers, there is a need for an architecture to

coordinate computing resource usage.

The process of coordinating applications relies

on the control loop that watches fog application

events and then reacts accordingly to the observed

events. Application monitoring is crucial in

determining the characteristics of the applications

in different states to control them. Tracking the way

the application behaves gives an opportunity for

application management tools to improve the

current status of applications and even provide

adaption mechanisms for resource optimization.

Figure 1 represents a monitoring architecture

for scraping various metrics from different

components of the cloud-fog system architecture

with multiple clusters. A pod includes a collection

of running applications or containers that are

deployed together on the same host. The pods by

design can expose the required metrics, which are

then collected by the Application Monitoring

Metrics Server. For the case of metrics related to

node utilization, another separate component Node

Exporter is used to collect the required metrics. The

monitoring metrics are exposed using standardized

techniques in the URL formats for easier querying

by the Application Monitoring Metrics Server. For

applications or jobs that are outside of the ‘local

network’, their metrics can be scraped through a

push gateway to the Application Monitoring

Metrics Server. All metrics are stored in a time-

series database located within the Application

Monitoring Metrics Server for persistence. The

recorded metrics are then displayed through

2 https://www.datadoghq.com/
3 https://prometheus.io/

mailto:jicts@udsm.ac.tz
https://www.nagios.org/
https://www.datadoghq.com/
https://prometheus.io/

 JICTS

Gilbert and Naiman Volume 2(2) Pages 107-122

111

 2024 jicts.udsm.ac.tz

dashboards or visualization tools, or they can be

queried through various API clients.

Alerts manager is used for abnormal readings

obtained from the server for administrative

responses. Apart from the standard metrics,

customized readings can also be configured at the

level of the applications, such as App_A, App_B

and App_C as shown in Figure 1.

In the fog and cloud layers, all functions related

to the management of computing resources and task

scheduling are performed by the broker component

(Figure 2). In addition, the broker in the fog layer

(in each fog device) is responsible for receiving

application requests and determining the

availability of computing resources. This will help

to create an appropriate applications coordination

schedule for the distribution of applications

according to requirements and availability of

resources.

The application registry is the part of the broker

that provides some interface for users to submit

applications as shown in Figure 1. Each application

that is received in the registry is tagged with

relevant information that specifies its type and

computing resources requirements, which is stored

in the Applications Database.

The next component of the broker is the Data

Scraper, which is used to get information about the

input data in the form of queries that come along or

are needed with the registered applications. The

aim is to establish the amount of data that is

distributed in the computing platform. The returned

results from the queries are included with

information, such as locations for input data, and

then made available for applications to use during

scheduling.

Figure 1. Architecture of grid service applications monitoring.

mailto:jicts@udsm.ac.tz

 JICTS

Gilbert and Naiman Volume 2(2) Pages 107-122

112

 2024 jicts.udsm.ac.tz

Figure 2. Architecure of service application broker.

Resource Monitor is another component of the

broker that is used to collect information and

monitor the use of computing resources available in

the fog nodes and the cloud. This information is

useful in determining the execution and data

transfer rates and is stored in the Resource

Database. This information is frequently changing

as resources are consumed, and released or there is

a change in configurations of policies, and therefore

the database is also updated accordingly. Having

the latest information about the status of the

resources in the fog and cloud nodes is crucial in

the scheduling plan of the application coordination.

The Application Scheduler and Coordinator

componentis responsible for devising the best plan

for scheduling and coordination of applications

based on information about resource consumption,

bandwidth usage, and other policies configured in

the computing platform. The output of the

scheduling plan is sent to the Applications

Dispatcher, which then sends the tasks of each

application to appropriate fog nodes and/or cloud as

determined in the scheduling plan.

4. Experiments

To illustrate the grid applications/services

monitoring for fault detection as a result of

abnormal current and voltage readings in SDN, a

simulation layout involving three transformers was

set up to mimic SDN owned by TANESCO. The

simulation layout is represented in Figure 3. A

Raspberry Pi computer (acting as a fog node) was

deployed in each of the three transformers in

locations 1 to 3 to track the current and voltage

readings of distribution lines. Most transformers

may serve up to 250 customers. When excessive

readings are detected on a fog node, the

mailto:jicts@udsm.ac.tz

 JICTS

Gilbert and Naiman Volume 2(2) Pages 107-122

113

 2024 jicts.udsm.ac.tz

corresponding utility alarm system is activated to

notify close by engineers. In addition, the observed

event reading is also sent to the cloud for data

aggregation. The aggregated information is

accessible through the system’s dashboard to the

technicians.

To manage and coordinate the computing

resources, the system monitoring architecture

shown in Figure 4 was set up to collect, aggregate,

process, and export information about running

applications. cAdvisor4 components provided

metrics of the fog nodes and the master or cloud

node. The metrics collected by cAdvisor are short-

lived (only 60 seconds), and hence, for the long-

term persistence of the metrics data, a backend

time-series database, Prometheus, was used.

Prometheus was chosen because of its powerful

query language and ability to aggregate and filter

data from distributed devices. On the aspect of

visualization, the Grafana5 tool was adopted

because of its rich open-source-based features for

visualizing graphs, charts and alarms.

This setup was put forward in order to facilitate

the collection of the following metrics:

CPU Usage: this involved the measure of the

utilization of the CPU by the applications on

fog and master nodes. The cAdvisor component

provides a Counter metric that calculates the

“per-second average rate of increase of the

time series in the range vector.”It is named as

container_cpu_usage_seconds_total.

Prometheus captures this metric and sends it to

Grafana to obtain CPU usage over a period of

time for each application and the total CPU

usage by all applications. It is measured in

terms of percentage.

Memory Usage: It is the measure of memory

that is being utilized by applications or

processes in a given computing node. Again,

the cAdvisor component exposes a metric

called “container_memory_usage_bytes,”

which is then used by the Grafana tool to obtain

the memory usage by each application and also

the aggregate (overall) memory usage.

Network Activity: It provides the metric about

the use of the network I/O in terms of data

transfer (Tx) and data received (Rx) to give an

indication of bandwidth usage and throughput.

Table 1 shows the configurations of

experiments that were used to assess the

performances. A minimum of 28 experiments were

conducted to evaluate the resource usage (CPU and

memory) among the computing nodes as more data

arrived from the sensor nodes. The Master node

was configured to host up to 60 containers, and the

fog node capacities were limited to just 10

containers. The Master node was considered to

have more computing resources than fog nodes.

The first experiment involved the configuration of

the Master with five (5) sensor nodes and no fog

node. Then, the number of sensor nodes was

increased to 40. The next experiment used the

Master node with the addition of one (1) fog node,

starting with 5 sensor nodes and then increasing to

40 nodes. The last experiment used the Master node

and three (3) fog nodes with 40 sensor nodes.

The system was implemented using the

FogFlow6 platform. During operation of the

platform, each sensor entity is associated with a

single application instance (container), which

means each fog node could only afford to

accommodate a maximum of 10 sensors.

4 https://github.com/google/cadvisor
5 https://grafana.com/

6 https://github.com/smartfog/fogflow

mailto:jicts@udsm.ac.tz

 JICTS

Gilbert and Naiman Volume 2(2) Pages 107-122

114

 2024 jicts.udsm.ac.tz

Figure 3. Fog Based Architecture for fault detection in secondary distribution network.

Figure 4. Setup for monitoring computing resources.

mailto:jicts@udsm.ac.tz

 JICTS

Gilbert and Naiman Volume 2(2) Pages 107-122

115

 2024 jicts.udsm.ac.tz

Table 1. Experiment configurations.

5. Results

5.1 Resource Usage

Since real-world devices were used in this part

of the study, the suitability of the proposed

architecture was tested based on memory, CPU and

network usage. From the implemented dashboard,

utilization of these metrics was obtained

periodically from the monitoring agents installed

on all the computing nodes. Figure 5 to Figure 8

show the current usage metrics (in a particular

period) captured from the computing nodes. Figure

5 illustrates the aggregated resource usage by fault

detection application components that have been

configured using containers. The overall number of

active containers, total memory and CPU usage are

shown.

Figure 6 and Figure 7 show the network usage

in terms of data transmitted and received,

respectively, recorded from the Master and fog

node containers for a particular period. Generally,

it can be observed that there is an increased network

activity as sensor streams are increased to the

computing platform. For instance, at time 12:00

(Figure 6) network usage for transmission was less

than 1 kB/s, but at 12:48, the network usage was

more than 12 kB/s. Further, the spike in network

activity at some points could indicate a fault

detection event. Fog nodes detected abnormal

conditions (e.g., voltage/current faults) on the

distribution lines. The detected fault data was

transmitted to the cloud, causing increased network

traffic. It is easier for system operators to make

informed and quick decisions based on the

dashboard's presented readings. Dynamic

application orchestration methods in Fog

computing can be enhanced through the use of up-

to-date data based on network usage.

From the presented results, it can be seen that

the more the amount of data to be processed the

more the computing resources needed, particularly

at the beginning of faults. Utility companies, such

as TANESCO in Tanzania, should allocate

corresponding computing resources to prepare to

deal with those incidents.

5.2 CPU Usage

It can be observed that, overall, CPU usage

increased with the addition of more sensors, as

depicted in Figure 8 and Figure 10. In Figure 8, as

more sensor streams were added for processing,

more CPU was needed for each individual

application. This is because there was an increasing

amount of data coming from the sensors for

processing.

The effectiveness of the proposed computing

architecture in resource usage was evaluated based

on the fault detection use case in the SDN. The

intention was to estimate the bottlenecks and

impact on the computing resources. Each

containerized application was designed to handle a

particular sensor node stream. In this way, it was

easy to examine how additions of sensor nodes affect

the usage of resources on the master node.

Figure 10 illustrates the resource (CPU) usage

as the number of sensor nodes increased. It can be

observed that, overall, as more sensors were added,

the CPU usage was also increasing. This is because

there was an increasing amount of data coming from

the sensors for processing.

Computing

Nodes
Number of Sensor Nodes Experimented

Master

Node

Fog

Nodes
5 10 15 20 25 30 35 40

1 0

1 1

1 2

1 3

mailto:jicts@udsm.ac.tz

 JICTS

Gilbert and Naiman Volume 2(2) Pages 107-122

116

 2024 jicts.udsm.ac.tz

Figure 5. Aggregated system resource usage.

Figure 6. Network resource usage (Transmit).

Figure 7. Network resource usage (Receive).

mailto:jicts@udsm.ac.tz

 JICTS

Gilbert and Naiman Volume 2(2) Pages 107-122

117

 2024 jicts.udsm.ac.tz

Figure 8. CPU Usage by individual applications (Containers).

Figure 9. Memory usage by individual applications (containers).

As expected, the highest value of 39% was

recorded when 35 sensor nodes were deployed, and

the lowest value of 19.5% was measured with 5

sensor nodes. In each case, the CPU usage

increased up to the highest peak and then levelled

across the execution-time window. This is due to

the fact that higher CPU power was required during

the initialization of application containers on the

computing node. Thirty-five Sensor nodes required

35 containers to be initialized to handle data

streams as compared to 5 containers needed for 5

sensor nodes. Therefore, more CPU power would

be needed in the former case than in the latter. The

same trend of increased CPU usage in relation to

the increasing number of sensor nodes was

observed in all the fog nodes.

mailto:jicts@udsm.ac.tz

 JICTS

Gilbert and Naiman Volume 2(2) Pages 107-122

118

 2024 jicts.udsm.ac.tz

Figure 10. CPU Usage based on the number of sensor

nodes.

Figure 11. Memory usage based on the number of

sensor nodes

5.3 Memory Usage

Figure 9 and Figure 11 present memory usage

in relation to the increasing number of sensor

nodes. Noting from Figure 9, each individual

application required more memory to deal with

increasing sensor stream data. Overall, it could be

noted that there was an increase in memory usage

as more sensors were added, with the highest usage

posted at 1.72 GiB with 35 sensor nodes and the

lowest being at 0.85 GiB when 5 sensor nodes were

used (Figure 11). This was attributed to the number

of application instances (containers) that needed to

be started for each sensor entity. It can also be

observed that there was a sharp jump in memory

usage for each group of sensors that were added.

For instance, with 35 sensor nodes, memory usage

went from 0.5 GiB to 1.2 GiB in less than a minute.

This information is crucial in determining the

threshold amount of memory needed in the worst-

case scenario, which might require all sensor nodes

to send data simultaneously.

5.4 Application Coordination

Each sensor node is associated with one

application instance (a container) that is invoked by

the assigned worker on the master or fog node.

Coordination is needed so that some computing

nodes are not overloaded while others stay idle.

Moreover, the coordination process would allocate

applications to the semi-autonomous fog nodes to

demonstrate the distributed computing concept. In

this case, the author adopted the coordination

mechanism used in Fogflow. When extra fog nodes

are added, the coordination process needs to be

more intelligent by ensuring that local data

processing is given higher priority and the load

balancing is handled among the computing devices.

Based on experiment configurations in Table 1,

fifty sensors (50) were added to demonstrate how

applications to process sensor streams can be

coordinated between Master and fog nodes.

Table 2. Tasks distribution between master node and

one fog node.

Tasks

Tasks Distribution

Master

Node (MN)

Percent.

MN (%)

Fog Node

1 (FN1)

Percent.

FN1 (%)

10 0 0.00 10 100

20 10 50.00 10 50

30 20 66.67 10 33.33

40 30 75.00 10 25

50 40 80.00 10 20

mailto:jicts@udsm.ac.tz

 JICTS

Gilbert and Naiman Volume 2(2) Pages 107-122

119

 2024 jicts.udsm.ac.tz

Table 3 Tasks distribution between master node and

two fog nodes.

Task Distribution

Tasks

Master

Node

(MN)

Per

cent.

MN

(%)

Fog

Node1

(FN1)

Per

cent.

FN1

(%)

Fog

Node2

(FN2)

Per

cent.

FN2(%)

10 0 0 0 0 10 100

20 0 0 10 50 10 50

30 10 33.33 10 33.33 10 33.33

40 20 50 10 25 10 25

50 30 60 10 20 10 20

Table 2, Table 3, and

Table 4 present task allocations observed across

computing nodes when the experiments were

carried out. The findings show that the workload

assigned to the Master node dropped significantly

from 80% with one fog node to 40% with all three

fog nodes deployed when 50 tasks were allocated.

This is also well illustrated by Figure 12, in

which the Master node was allocated 0 tasks for the

first 30 tasks that were available for allocation. This

signifies that a small amount of data would be sent

to the centralized Master node, hence reducing

network traffic latency and processing time.

Moreover, utilization of the fog nodes is increased

as more tasks are allocated across these devices,

and as such is the case, there is a profound effect on

latency-sensitive applications, which would require

real-time decision-making.

Figure 12. Master node tasks allocation workload.

Figure 13 shows the workload allocation for the

Fog Node 1 in conjunction with other computing

nodes. When 10 tasks were made available for

allocation, the coordination manager allocated

100% of the tasks to the fog node. When the extra

fog node was added (Fog Node 2), the allocation

dropped considerably to 0%, a difference of 100%.

This is explained by the fact that Fog Node 1 was

geographically much farther than Fog Node 2 in

relation to the 10 sensor nodes. The same trend was

observed when Fog Node 3 was added.

Table 4 Tasks Distribution Between Master Node and Three Fog Nodes

Task Allocation

Tasks

Master

Node

(MN)

Per cent.

MN(%)

Fog

Node1

(FN1)

Per cent.

FN1(%)

Fog

Node2

(FN2)

Per cent.

FN2(%)

Fog

Node3

(FN3)

Per cent.

FN3(%)

10 0 0 2 20 5 50 3 30

20 0 0 5 25 10 50 5 25

30 0 0 10 33.33 10 33.33 10 33.33

40 10 25 10 25 10 25 10 25

50 20 40 10 20 10 20 10 20

mailto:jicts@udsm.ac.tz

 JICTS

Gilbert and Naiman Volume 2(2) Pages 107-122

120

 2024 jicts.udsm.ac.tz

Figure 13. Fog node 1 task allocation workload.

Preliminary results indicate that the

introduction of fog nodes significantly reduces

latency, cutting processing times from seconds to

milliseconds. The improved response times

enhance fault detection, enabling quicker

interventions in the event of power irregularities.

Furthermore, fog nodes efficiently handle real-

time data, reducing the volume of raw data sent to

the cloud by processing it locally. Only critical data

is transmitted to the cloud for long-term storage and

analysis, leading to more efficient data throughput.

In the aspect of scalability performance,

simulations and pilot deployments show that the

architecture scales well with increasing numbers of

sensors. Fog nodes handle additional loads without

introducing performance bottlenecks, and the cloud

infrastructure adapts to store and analyze increasing

amounts of data.

Although the architecture demonstrates

substantial benefits in latency reduction and real-

time processing, challenges remain regarding the

cost of deploying fog nodes across SDN’s vast

network, such as that of TANESCO. Additionally,

data security measures require continuous

improvement to mitigate the risks of cyberattacks.

This can form the basis for future work.

6. Conclusion

The proposed fog-based computing architecture

and application coordination mechanism

effectively improved the computing workload

distribution of up to 70% for fog-based

architectures and to 40% for cloud-based

architectures, indicating that most data processing

is localized to fog nodes. Moreover, fog-based

architecture provided improvements of 70%,

compared to cloud-only architectures, indicating

further that most data processing is localized, hence

reducing costs related to transfer and processing to

cloud systems. For that matter, it can be confidently

stated that pushing data processing and intelligence

to the edges can considerably enhance the fault

management processes in the electrical secondary

distributed network.

Future work could extend the evaluation to

include latency, makespan, miss ratio, average

delay, and cost per execution to complement the

equitable assessment of the proposed architecture.

Further, areas related to limited computation

power, energy consumption, data privacy and

security of fog nodes and networks can be explored.

ACKNOWLEDGEMENT

The authors express their heartfelt gratitude to SIDA, the University of Dar es Salaam, and the University of

Dodoma for their invaluable support, which was instrumental in the successful completion of this research.

CONTRIBUTION OF CO-AUTHORS

Gilbert M. Gilbert [ORCID: 0000-0002-9615-9715] Conceived the idea, and analyzed results and

wrote the paper

Shililiandumi Naiman [ORCID: 0000-0002-8499-7543 Provided supervision to experiments

mailto:jicts@udsm.ac.tz
https://orcid.org/0000-0002-9615-9715
https://orcid.org/0000-0002-8499-7543

 JICTS

Gilbert and Naiman Volume 2(2) Pages 107-122

121

 2024 jicts.udsm.ac.tz

REFERENCES

[1] M. I. Henderson, D. Novosel, and M. L. Crow, “Electric Power Grid Modernization Trends,

Challenges, and Opportunities,” 2017.

[2] A. Abdalla and K. Ibwe, “Smart Grid in Tanzania: Research Opportunities,” Tanzania Journal of

Engineering and Technology, vol. 42, no. 2, pp. 170–183, Jun. 2023, doi: 10.52339/tjet.v42i2.838.

[3] J. Powell, A. McCafferty-Leroux, W. Hilal, and S. A. Gadsden, “Smart Grids: A Comprehensive

Survey of Challenges, Industry Applications, and Future Trends,” Jan. 2024, [Online]. Available:

http://arxiv.org/abs/2401.13105.

[4] S. Ma, H. Zhang, and X. Xing, “Scalability for Smart Infrastructure System in Smart Grid: A

Survey,” Wirel Pers Commun, vol. 99, no. 1, pp. 161–184, Mar. 2018, doi: 10.1007/s11277-017-

5045-y.

[5] P. Boccadoro, “Smart Grids empowerment with Edge Computing: An Overview,” Sep. 2018,

[Online]. Available: http://arxiv.org/abs/1809.10060.

[6] G. M. Gilbert, S. Naiman, H. Kimaro, and B. Bagile, “A critical review of edge and fog computing

for smart grid applications,” in IFIP Advances in Information and Communication Technology, P.

Nielsen and H. C. Kimaro, Eds., Cham: Springer, Cham, May 2019, pp. 763–775. doi: 10.1007/978-

3-030-18400-1_62.

[7] M. Forcan and M. Maksimović, “Cloud-Fog-based approach for Smart Grid monitoring,” Simul

Model Pract Theory, vol. 101, no. June 2019, p. 101988, 2020, doi: 10.1016/j.simpat.2019.101988.

[8] R. Mahmud, R. Kotagiri, and R. Buyya, “Fog Computing: A Taxonomy, Survey and Future

Directions,” 2018, pp. 103–130. doi: 10.1007/978-981-10-5861-5_5.

[9] S. N. Srirama, “A decade of research in fog computing: Relevance, challenges, and future

directions,” Softw Pract Exp, vol. 54, no. 1, pp. 3–23, Jan. 2024, doi: 10.1002/spe.3243.

[10] A. Prasad, J. Belwin Edward, and K. Ravi, “A review on fault classification methodologies in power

transmission systems: Part-II,” Journal of Electrical Systems and Information Technology, vol. 5,

no. 1, pp. 61–67, May 2018, doi: 10.1016/j.jesit.2016.10.003.

[11] J. De La Cruz, E. Gómez-Luna, M. Ali, J. C. Vasquez, and J. M. Guerrero, “Fault Location for

Distribution Smart Grids: Literature Overview, Challenges, Solutions, and Future Trends,” Energies

(Basel), vol. 16, no. 5, p. 2280, Feb. 2023, doi: 10.3390/en16052280.

[12] M. Nunes et al., "Fault detection and location in low voltage grids based on RF-MESH sensor

networks,"CIRED Workshop 2016, Helsinki, 2016, pp. 1-4, doi: 10.1049/cp.2016.0743.

[13] H. B. Gooi, T. Wang, and Y. Tang, “Edge Intelligence for Smart Grid: A Survey on Application

Potentials,” CSEE Journal of Power And Energy Systems, vol. 9, no. 5, p. 1623, 2023, doi:

10.17775/CSEEJPES.2022.02210.

[14] L. Mei, M. Qi, and Z. Li, “Edge-Cloud Collaborative Fault Detection for Distribution Networks

Using Attention Mechanism,” in 2022 IEEE Power & Energy Society General Meeting (PESGM),

IEEE, Jul. 2022, pp. 1–5. doi: 10.1109/PESGM48719.2022.9917097.

mailto:jicts@udsm.ac.tz

 JICTS

Gilbert and Naiman Volume 2(2) Pages 107-122

122

 2024 jicts.udsm.ac.tz

[15] D. Sodin, U. Rudež, M. Mihelin, M. Smolnikar, and A. Čampa, “Advanced Edge-Cloud Computing

Framework for Automated PMU-Based Fault Localization in Distribution Networks,” Applied

Sciences, vol. 11, no. 7, p. 3100, Mar. 2021, doi: 10.3390/app11073100.

[16] W. Huo, F. Liu, L. Wang, Y. Jin, and L. Wang, “Research on Distributed Power Distribution Fault

Detection Based on Edge Computing,” IEEE Access, vol. 8, pp. 24643–24652, 2020, doi:

10.1109/ACCESS.2019.2962176.

[17] S. Netsanet, D. Zheng, Z. Wei, and G. Teshager, “Cognitive Edge Computing–Based Fault

Detection and Location Strategy for Active Distribution Networks,” Front Energy Res, vol. 10, Aug.

2022, doi: 10.3389/fenrg.2022.826915.

[18] A. S. Alhanaf, H. H. Balik, and M. Farsadi, “Intelligent Fault Detection and Classification Schemes

for Smart Grids Based on Deep Neural Networks,” Energies (Basel), vol. 16, no. 22, p. 7680, Nov.

2023, doi: 10.3390/en16227680.

[19] J. Li, C. Gu, Y. Xiang, and F. Li, “Edge-cloud Computing Systems for Smart Grid: State-of-the-art,

Architecture, and Applications,” Journal of Modern Power Systems and Clean Energy, vol. 10, no.

4, pp. 805–817, 2022, doi: 10.35833/MPCE.2021.000161.

[20] B. Cheng, E. Kovacs, A. Kitazawa, K. Terasawa, T. Hada, and M. Takeuchi, “FogFlow:

Orchestrating IoT services over cloud and edges,” NEC Technical Journal, vol. 13, no. 1, pp. 48–

53, 2018.

[21] J. Li et al., “Resource Orchestration of Cloud-Edge–based Smart Grid Fault Detection,” ACM Trans

Sens Netw, vol. 18, no. 3, pp. 1–26, Aug. 2022, doi: 10.1145/3529509.

[22] J. Povedano-Molina, J. M. Lopez-Vega, J. M. Lopez-Soler, A. Corradi, and L. Foschini, “DARGOS:

A highly adaptable and scalable monitoring architecture for multi-tenant Clouds,” Future

Generation Computer Systems, vol. 29, no. 8, pp. 2041–2056, Oct. 2013, doi:

10.1016/j.future.2013.04.022.

mailto:jicts@udsm.ac.tz

