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1. Introduction 

The current electric power grid systems face 

growing economic and environmental concerns, 

prompting the need for more efficient and 

sustainable solutions [1]. Smart grid architectures 

have emerged as a potential replacement, 

leveraging Information and Communication 

Technologies (ICT) to offer a range of intelligent 

services. These services include the integration of 

renewable energy sources, load monitoring and 

control, and management of power generation and 

consumption [2]. However, the complexity of smart 

grid systems arises from the multitude of devices 

and applications that are interconnected through 

two-way communication networks, posing 
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Abstract 

In monitoring the health of secondary distribution networks (SDNs), 

power utility providers have faced an increasing need to deploy 

intelligent solutions with affordable sensing and data-driven 

technologies. Existing manual-based approaches are not capable of 

collecting large volumes of real-time operational data to achieve 

significant monitoring of the SDN network for reliable power 

distribution. Effective monitoring would require real-time sensing, 

scalable high-performance computing, and appropriate grid-based 

applications designed for efficient data processing. This paper 

presents a computing architecture for grid services monitoring to 

enhance real-time fault management in SDN. The architecture 

leverages wireless sensor networks, a hybrid cloud-fog computing 

architecture, and a heuristic-based application coordination 

mechanism to efficiently manage grid applications. Experimental 

results indicate that coordination mechanism improved workload 

distribution by up to 70% in fog nodes and to 40% in the cloud. A 

fog-based architecture provided low latency improvements of  70% 

compared with that of cloud-only architectures. This signifies that 

most of the data processing was pushed to the local fog nodes, which 

is crucial for distributed fault management applications.  
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significant challenges for effective control and 

management [3]. 

As smart grid technologies are gradually 

integrated into distribution networks, which 

represent the largest segment of the entire power 

system, the management of both soft and hard 

assets becomes increasingly difficult [4, 5]. These 

challenges are exacerbated by the vast geographical 

coverage and size of the networks. The architecture 

of a smart grid demands an extensive deployment 

of sensors and Internet of Things (IoT) devices that 

generate massive volumes of data. This large-scale 

deployment of IoT devices and sensors leads to the 

typical "big data" issues of volume, velocity, and 

variety. Additionally, these data streams introduce 

requirements for accuracy, security, Quality of 

Service (QoS), and user expectations, while 

ensuring operational cost efficiency. The generated 

data are essential for effective grid services and 

applications management, but they also demand 

robust computing architectures for data processing, 

analysis, and storage. 

Cloud computing has become the de facto 

standard for supporting IoT-enabled smart grid 

solutions, providing scalability, reliable data 

analysis, and operational efficiency. However, 

centralizing cloud facilities geographically 

necessitates multi-hop transmission of data 

collected from sensors to the cloud systems for 

processing. This setup negatively impacts latency-

sensitive applications, network bandwidth, and data 

locality, leading to delays, security issues, and 

inefficiencies[6, 7]. 

In response to these challenges, fog (edge) 

computing has emerged as an effective platform 

that bridges the gap between cloud and IoT [8]. By 

leveraging lightweight and customizable 

computing resources located closer to the data 

source, fog computing reduces the need for multi-

hop data communication. Typical edge computing 

devices, such as switches, routers, and low-profile 

computers are integrated with the necessary 

computational infrastructure and management 

models to support local data processing. This 

architecture not only reduces latency but also 

enhances service flexibility, security and 

distributing resource demands more effectively. 

Although fog computing nodes have limited 

computational power, they are customizable to 

address specific application needs. Additionally, 

fog computing enhances data privacy by enabling 

local storage of sensitive information instead of 

transmitting them to centralized data centers. 

Despite its benefits, fog computing faces 

challenges in ensuring seamless interoperability 

and coordination between cloud and fog services 

[9]. There is a need for techniques that facilitate the 

migration of secondary distribution network (SDN) 

grid services and applications between cloud and 

fog nodes without compromising system 

performance, while also addressing the inherent 

architectural differences. The focus is on 

identifying a design capable of supporting seamless 

application migration while maintaining the 

required performance levels. To achieve this, 

monitoring the resource usage of each grid 

application/service and identifying appropriate 

triggers for migration decisions are essential. This 

will ensure computing resources between the fog-

cloud continuum are well utilized. 

This paper introduces a design for grid 

applications/services monitoring platform that 

leverages fog computing to address the limitations 

of cloud-only architectures in managing faults in 

SDNs. The proposed architecture integrates 

wireless sensor networks fog-based computing and 

an application coordination algorithm to support 

real-time monitoring and management of grid 

services, particularly for fault management. A 

proof-of-concept prototype (Figure 3) is developed 

to demonstrate the platform’s effectiveness, 
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focusing on workload distribution, latency 

reduction, and improved fault detection in SDNs. 

2. Literature Review 

A fault in an electric power system is an 

abnormal condition that can be produced by a 

variety of factors, such as weather, human error, 

fire, and hardware problems. Faults can include 

open circuits and short circuits, among other things. 

Short circuits are the most common problems in 

distribution networks, and they can be diagnosed by 

analyzing phase currents [10]. Furthermore, 

depending on whether the faults occur on 

distribution lines or transformer substations, they 

can be classed as overcurrent, over/undervoltage, 

over-temperature, overloading, low oil level, or 

earth faults. Based on the severity of the fault and 

the duration of the problem, it may lead to poor 

power quality, unreliable supply, reduced 

consumer comfort, and potential equipment 

damage or safety hazards. 

Fault detection automation in electrical power 

systems is one of the most effective technologies 

for reducing outage times. There are significant 

works that address fault detection and clearance in 

transmission and primary distribution networks 

using centralized systems, such as Supevisory 

Control and Data Acquisition (SCADA) and 

Distributed Management Systems (DMS) [11]. 

However, because of the complexity and 

pervasiveness of SDN, more research leveraging 

distributed architecture is required to overcome 

network fault clearance issues. Management of 

faults in SDNs, including the Tanzanian network, 

relies on customer call information or virtual 

inspections for fault identification, which leads to 

longer duration for resolving problems [12]. 

A work by Gilbert et al. [6] and Gooi et al. [13] 

have thoroughly reviewed the application 

potentials of using edge computing and intelligence 

in power systems. A study by Mei et al. [14] 

discusses edge-cloud collaboration for fast and 

accurate fault detection in Low Voltage (LV) 

distribution networks using deep learning 

techniques. It does not detail much about the 

architecture design. Similarly, a study done by 

Sodin et al. [15] demonstrated the use of a hybrid 

edge-cloud approach in fault management by 

successfully utilizing Phasor Measurement Unit 

(PMU) and Long-Term Evolution (LTE) 

technologies. However, it did not deal with grid 

application/service coordination for resource 

management.  Further, Huo et al. [16] looked into 

proposing wavelet transform applications in fault 

detection based on edge computing. Issues of 

application/services management were not 

discussed. A study by Netsanet et al. [17] proposes 

a cognitive edge computing-based fault detection 

strategy using support vector machines (SVM) for 

detection and long short-term memory (LSTM) 

models for fault localization. It leverages a 

distributed architecture to improve real-time 

detection accuracy and reduce fault-clearing times 

in active distribution networks. This work 

addresses challenges related to adaptive settings, 

high impedance faults, and complex grid conditions 

without relying heavily on centralized systems. The 

study heavily relies on machine learning models, 

which require significant training data and 

computational resources for real-world 

applications. It does not address grid service 

coordination, limiting scalability for large SDNs. 

Fog nodes may suffer from resource constraints 

during large-scale deployments in complex 

environments. 

A study by Alhanaf et al.[18] introduces fault 

detection methods leveraging artificial neural 

networks and one-dimensional convolutional 

neural networks for smart grids. It achieves 

impressive accuracy in detecting, classifying, and 

locating faults using sensor data, such as voltage 

and current signals. However, it has limited 

applicability to complex grid environments, 

including SDNs. 
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Smart grid services involve several applications 

that take advantage of the resources in cloud and 

fog systems. Since these applications have differing 

computing needs and priorities, there is a need for 

mechanisms to coordinate their processing. A 

comprehensive review by Li et al. [19] provides the 

status of edge-cloud systems in smart grids, 

detailing architectures and applications, including 

fault management. It highlights challenges, such as 

latency, dynamic resource allocation, and 

integration complexity. This study focuses heavily 

on theoretical architecture without practical case 

studies or real-world validations. A work by 

Santoro et al. [20] considered a platform for 

workload orchestration in a fog computing 

environment by offering the functionality of 

negotiation, scheduling, and workload placement, 

taking into account traditional requirements (e.g., 

RAM, CPU, Storage size). Li et al. used neural 

networks to orchestrate resources between cloud 

and fog systems for smart grid fault detection [21]. 

These solutions did not consider environmental 

complexities, such as those found in SDNs. 

There are various application resource 

monitoring systems. For instance, Nagios1, 

Datadog2, Prometheus3 and Dargos [22] are used 

for monitoring applications, services, operating 

systems, and network protocols across several 

platforms. Choosing the right tool depends on 

individual project needs, hence a lot of 

customization is needed.  

There are still issues related to limited practical 

SDN fault management solutions, grid services 

coordination for resource management, and 

complexities of SDN. This work seeks to contribute 

to enhancing fault detection accuracy, improving 

system reliability, and ensuring efficient 

orchestration of grid services in complex SDNs. 

 
1 https://www.nagios.org/ 

 

3. Cloud-Fog Application Monitoring 

Architecture 

To efficiently manage, monitor, and optimize 

applications deployed in distributed computing in 

the SDN environment that spans both cloud and fog 

layers, there is a need for an architecture to 

coordinate computing resource usage. 

The process of coordinating applications relies 

on the control loop that watches fog application 

events and then reacts accordingly to the observed 

events. Application monitoring is crucial in 

determining the characteristics of the applications 

in different states to control them. Tracking the way 

the application behaves gives an opportunity for 

application management tools to improve the 

current status of applications and even provide 

adaption mechanisms for resource optimization. 

Figure 1 represents a monitoring architecture 

for scraping various metrics from different 

components of the cloud-fog system architecture 

with multiple clusters. A pod includes a collection 

of running applications or containers that are 

deployed together on the same host. The pods by 

design can expose the required metrics, which are 

then collected by the Application Monitoring 

Metrics Server. For the case of metrics related to 

node utilization, another separate component Node 

Exporter is used to collect the required metrics. The 

monitoring metrics are exposed using standardized 

techniques in the URL formats for easier querying 

by the Application Monitoring Metrics Server. For 

applications or jobs that are outside of the ‘local 

network’, their metrics can be scraped through a 

push gateway to the Application Monitoring 

Metrics Server. All metrics are stored in a time-

series database located within the Application 

Monitoring Metrics Server for persistence. The 

recorded metrics are then displayed through 

2 https://www.datadoghq.com/  
3 https://prometheus.io/  
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dashboards or visualization tools, or they can be 

queried through various API clients.  

Alerts manager is used for abnormal readings 

obtained from the server for administrative 

responses. Apart from the standard metrics, 

customized readings can also be configured at the 

level of the applications, such as App_A, App_B 

and App_C as shown in Figure 1.  

In the fog and cloud layers, all functions related 

to the management of computing resources and task 

scheduling are performed by the broker component 

(Figure 2). In addition, the broker in the fog layer 

(in each fog device) is responsible for receiving 

application requests and determining the 

availability of computing resources. This will help 

to create an appropriate applications coordination 

schedule for the distribution of applications 

according to requirements and availability of 

resources.  

The application registry is the part of the broker 

that provides some interface for users to submit 

applications as shown in Figure 1. Each application 

that is received in the registry is tagged with 

relevant information that specifies its type and 

computing resources requirements, which is stored 

in the Applications Database.  

The next component of the broker is the Data 

Scraper, which is used to get information about the 

input data in the form of queries that come along or 

are needed with the registered applications. The 

aim is to establish the amount of data that is 

distributed in the computing platform. The returned 

results from the queries are included with 

information, such as locations for input data, and 

then made available for applications to use during 

scheduling. 

 
Figure 1. Architecture of grid service applications monitoring.  
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Figure 2. Architecure of service application broker. 

Resource Monitor is another component of the 

broker that is used to collect information and 

monitor the use of computing resources available in 

the fog nodes and the cloud. This information is 

useful in determining the execution and data 

transfer rates and is stored in the Resource 

Database. This information is frequently changing 

as resources are consumed, and released or there is 

a change in configurations of policies, and therefore 

the database is also updated accordingly. Having 

the latest information about the status of the 

resources in the fog and cloud nodes is crucial in 

the scheduling plan of the application coordination. 

The Application Scheduler and Coordinator 

componentis  responsible for devising the best plan 

for scheduling and coordination of applications 

based on information about resource consumption, 

bandwidth usage, and other policies configured in 

the computing platform. The output of the 

scheduling plan is sent to the Applications 

Dispatcher, which then sends the tasks of each 

application to appropriate fog nodes and/or cloud as 

determined in the scheduling plan. 

4. Experiments  

To illustrate the grid applications/services 

monitoring for fault detection as a result of 

abnormal current and voltage readings in SDN, a 

simulation layout involving three transformers was 

set up to mimic SDN owned by TANESCO. The 

simulation layout is represented in Figure 3. A 

Raspberry Pi computer (acting as a fog node) was 

deployed in each of the three transformers in 

locations 1 to 3 to track the current and voltage 

readings of distribution lines. Most transformers 

may serve up to 250 customers. When excessive 

readings are detected on a fog node, the 
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corresponding utility alarm system is activated to 

notify close by engineers. In addition, the observed 

event reading is also sent to the cloud for data 

aggregation. The aggregated information is 

accessible through the system’s dashboard to the 

technicians.  

To manage and coordinate the computing 

resources, the system monitoring architecture 

shown in Figure 4 was set up to collect, aggregate, 

process, and export information about running 

applications. cAdvisor4 components provided 

metrics of the fog nodes and the master or cloud 

node. The metrics collected by cAdvisor are short-

lived (only 60 seconds), and hence, for the long-

term persistence of the metrics data, a backend 

time-series database, Prometheus, was used. 

Prometheus was chosen because of its powerful 

query language and ability to aggregate and filter 

data from distributed devices. On the aspect of 

visualization, the Grafana5 tool was adopted 

because of its rich open-source-based features for 

visualizing graphs, charts and alarms. 

This setup was put forward in order to facilitate 

the collection of the following metrics:  

CPU Usage: this involved the measure of the 

utilization of the CPU by the applications on 

fog and master nodes. The cAdvisor component 

provides a Counter metric that calculates the 

“per-second average rate of increase of the 

time series in the range vector.”It is named as 

container_cpu_usage_seconds_total. 

Prometheus captures this metric and sends it to 

Grafana to obtain CPU usage over a period of 

time for each application and the total CPU 

usage by all applications. It is measured in 

terms of percentage.  

Memory Usage: It is the measure of memory 

that is being utilized by applications or 

processes in a given computing node. Again, 

the cAdvisor component exposes a metric 

called “container_memory_usage_bytes,” 

which is then used by the Grafana tool to obtain 

the memory usage by each application and also 

the aggregate (overall) memory usage. 

Network Activity: It provides the metric about 

the use of the network I/O in terms of data 

transfer (Tx) and data received (Rx) to give an 

indication of bandwidth usage and throughput. 

Table 1 shows the configurations of 

experiments that were used to assess the 

performances. A minimum of 28 experiments were 

conducted to evaluate the resource usage (CPU and 

memory) among the computing nodes as more data 

arrived from the sensor nodes. The Master node 

was configured to host up to 60 containers, and the 

fog node capacities were limited to just 10 

containers. The Master node was considered to 

have more computing resources than fog nodes. 

The first experiment involved the configuration of 

the Master with five (5) sensor nodes and no fog 

node. Then, the number of sensor nodes was 

increased to 40. The next experiment used the 

Master node with the addition of one (1) fog node, 

starting with 5 sensor nodes and then increasing to 

40 nodes. The last experiment used the Master node 

and three (3) fog nodes with 40 sensor nodes.  

The system was implemented using the 

FogFlow6 platform. During operation of the 

platform, each sensor entity is associated with a 

single application instance (container), which 

means each fog node could only afford to 

accommodate a maximum of 10 sensors. 

 

 
4 https://github.com/google/cadvisor 
5 https://grafana.com/ 

6 https://github.com/smartfog/fogflow 
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Figure 3. Fog Based Architecture for fault detection in secondary distribution network. 

 

 

Figure 4. Setup for monitoring computing resources. 
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Table 1. Experiment configurations. 

5. Results  

5.1 Resource Usage 

Since real-world devices were used in this part 

of the study, the suitability of the proposed 

architecture was tested based on memory, CPU and 

network usage. From the implemented dashboard, 

utilization of these metrics was obtained 

periodically from the monitoring agents installed 

on all the computing nodes. Figure 5 to Figure 8 

show the current usage metrics (in a particular 

period) captured from the computing nodes. Figure 

5 illustrates the aggregated resource usage by fault 

detection application components that have been 

configured using containers. The overall number of 

active containers, total memory and CPU usage are 

shown. 

Figure 6 and Figure 7 show the network usage 

in terms of data transmitted and received, 

respectively, recorded from the Master and fog 

node containers for a particular period. Generally, 

it can be observed that there is an increased network 

activity as sensor streams are increased to the 

computing platform. For instance, at time 12:00 

(Figure 6) network usage for transmission was less 

than 1 kB/s, but at 12:48, the network usage was 

more than 12 kB/s. Further, the spike in network 

activity at some points could indicate a fault 

detection event. Fog nodes detected abnormal 

conditions (e.g., voltage/current faults) on the 

distribution lines. The detected fault data was 

transmitted to the cloud, causing increased network 

traffic. It is easier for system operators to make 

informed and quick decisions based on the 

dashboard's presented readings. Dynamic 

application orchestration methods in Fog 

computing can be enhanced through the use of up-

to-date data based on network usage.  

From the presented results, it can be seen that 

the more the amount of data to be processed the 

more the computing resources needed, particularly 

at the beginning of faults. Utility companies, such 

as TANESCO in Tanzania, should allocate 

corresponding computing resources to prepare to 

deal with those incidents. 

5.2 CPU Usage 

It can be observed that, overall, CPU usage 

increased with the addition of more sensors, as 

depicted in Figure 8 and Figure 10. In Figure 8, as 

more sensor streams were added for processing, 

more CPU was needed for each individual 

application. This is because there was an increasing 

amount of data coming from the sensors for 

processing. 

The effectiveness of the proposed computing 

architecture in resource usage was evaluated based 

on the fault detection use case in the SDN. The 

intention was to estimate the bottlenecks and 

impact on the computing resources. Each 

containerized application was designed to handle a 

particular sensor node stream. In this way, it was 

easy to examine how additions of sensor nodes affect 

the usage of resources on the master node.  

Figure 10 illustrates the resource (CPU) usage 

as the number of sensor nodes increased. It can be 

observed that, overall, as more sensors were added, 

the CPU usage was also increasing. This is because 

there was an increasing amount of data coming from 

the sensors for processing.

Computing 

Nodes  
Number of Sensor Nodes Experimented 

Master 

Node 

Fog 

Nodes 
5 10 15 20 25 30 35 40 

1 0                 

1 1                 

1 2                 

1 3                 
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Figure 5. Aggregated system resource usage. 

 

Figure 6. Network resource usage (Transmit). 

 

Figure 7. Network resource usage (Receive). 
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Figure 8. CPU Usage by individual applications (Containers). 

 

 

Figure 9. Memory usage by individual applications (containers). 
 

As expected, the highest value of 39% was 

recorded when 35 sensor nodes were deployed, and 

the lowest value of 19.5% was measured with 5 

sensor nodes. In each case, the CPU usage 

increased up to the highest peak and then levelled 

across the execution-time window. This is due to 

the fact that higher CPU power was required during 

the initialization of application containers on the 

computing node. Thirty-five Sensor nodes required 

35 containers to be initialized to handle data 

streams as compared to 5 containers needed for 5 

sensor nodes. Therefore, more CPU power would 

be needed in the former case than in the latter. The 

same trend of increased CPU usage in relation to 

the increasing number of sensor nodes was 

observed in all the fog nodes. 
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Figure 10. CPU Usage based on the number of sensor 

nodes. 

 

Figure 11. Memory usage based on the number of 

sensor nodes 

5.3 Memory Usage 

Figure 9 and Figure 11 present memory usage 

in relation to the increasing number of sensor 

nodes. Noting from Figure 9, each individual 

application required more memory to deal with 

increasing sensor stream data.  Overall, it could be 

noted that there was an increase in memory usage 

as more sensors were added, with the highest usage 

posted at 1.72 GiB with 35 sensor nodes and the 

lowest being at 0.85 GiB when 5 sensor nodes were 

used (Figure 11). This was attributed to the number 

of application instances (containers) that needed to 

be started for each sensor entity. It can also be 

observed that there was a sharp jump in memory 

usage for each group of sensors that were added. 

For instance, with 35 sensor nodes, memory usage 

went from 0.5 GiB to 1.2 GiB in less than a minute.  

This information is crucial in determining the 

threshold amount of memory needed in the worst-

case scenario, which might require all sensor nodes 

to send data simultaneously. 

5.4 Application Coordination 

Each sensor node is associated with one 

application instance (a container) that is invoked by 

the assigned worker on the master or fog node. 

Coordination is needed so that some computing 

nodes are not overloaded while others stay idle. 

Moreover, the coordination process would allocate 

applications to the semi-autonomous fog nodes to 

demonstrate the distributed computing concept. In 

this case, the author adopted the coordination 

mechanism used in Fogflow. When extra fog nodes 

are added, the coordination process needs to be 

more intelligent by ensuring that local data 

processing is given higher priority and the load 

balancing is handled among the computing devices. 

Based on experiment configurations in Table 1, 

fifty sensors (50) were added to demonstrate how 

applications to process sensor streams can be 

coordinated between Master and fog nodes. 

Table 2. Tasks distribution between master node and 

one fog node. 

Tasks 

Tasks Distribution 

Master 

Node (MN) 

Percent. 

MN (%) 

Fog Node 

1 (FN1) 

Percent. 

FN1 (%) 

10 0 0.00 10 100 

20 10 50.00 10 50 

30 20 66.67 10 33.33 

40 30 75.00 10 25 

50 40 80.00 10 20 
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Table 3 Tasks distribution between master node and 

two fog nodes. 

 

Task Distribution 

Tasks 

Master 

Node 

(MN) 

Per 

cent. 

MN 

(%) 

Fog 

Node1  

(FN1) 

Per 

cent. 

FN1 

(%) 

Fog 

Node2 

(FN2) 

Per 

cent. 

FN2(%) 

10 0 0 0 0 10 100 

20 0 0 10 50 10 50 

30 10 33.33 10 33.33 10 33.33 

40 20 50 10 25 10 25 

50 30 60 10 20 10 20 

Table 2, Table 3, and  

Table 4 present task allocations observed across 

computing nodes when the experiments were 

carried out. The findings show that the workload 

assigned to the Master node dropped significantly 

from 80% with one fog node to 40% with all three 

fog nodes deployed when 50 tasks were allocated. 

This is also well illustrated by Figure 12, in 

which the Master node was allocated 0 tasks for the 

first 30 tasks that were available for allocation. This 

signifies that a small amount of data would be sent 

to the centralized Master node, hence reducing 

network traffic latency and processing time. 

Moreover, utilization of the fog nodes is increased 

as more tasks are allocated across these devices, 

and as such is the case, there is a profound effect on 

latency-sensitive applications, which would require 

real-time decision-making. 

 

Figure 12. Master node tasks allocation workload. 

Figure 13 shows the workload allocation for the 

Fog Node 1 in conjunction with other computing 

nodes. When 10 tasks were made available for 

allocation, the coordination manager allocated 

100% of the tasks to the fog node. When the extra 

fog node was added (Fog Node 2), the allocation 

dropped considerably to 0%, a difference of 100%. 

This is explained by the fact that Fog Node 1 was 

geographically much farther than Fog Node 2 in 

relation to the 10 sensor nodes. The same trend was 

observed when Fog Node 3 was added. 

 

Table 4 Tasks Distribution Between Master Node and Three Fog Nodes 

 
Task Allocation 

Tasks 

Master 

Node 

(MN) 

Per cent. 

MN(%) 

Fog 

Node1 

(FN1) 

Per cent. 

FN1(%) 

Fog 

Node2 

(FN2) 

Per cent. 

FN2(%) 

Fog 

Node3 

(FN3) 

Per cent. 

FN3(%) 

10 0 0 2 20 5 50 3 30 

20 0 0 5 25 10 50 5 25 

30 0 0 10 33.33 10 33.33 10 33.33 

40 10 25 10 25 10 25 10 25 

50 20 40 10 20 10 20 10 20 
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Figure 13. Fog node 1 task allocation workload. 

Preliminary results indicate that the 

introduction of fog nodes significantly reduces 

latency, cutting processing times from seconds to 

milliseconds. The improved response times 

enhance fault detection, enabling quicker 

interventions in the event of power irregularities. 

Furthermore, fog nodes efficiently handle real-

time data, reducing the volume of raw data sent to 

the cloud by processing it locally. Only critical data 

is transmitted to the cloud for long-term storage and 

analysis, leading to more efficient data throughput. 

In the aspect of scalability performance, 

simulations and pilot deployments show that the 

architecture scales well with increasing numbers of 

sensors. Fog nodes handle additional loads without 

introducing performance bottlenecks, and the cloud 

infrastructure adapts to store and analyze increasing 

amounts of data. 

Although the architecture demonstrates 

substantial benefits in latency reduction and real-

time processing, challenges remain regarding the 

cost of deploying fog nodes across SDN’s vast 

network, such as that of TANESCO. Additionally, 

data security measures require continuous 

improvement to mitigate the risks of cyberattacks. 

This can form the basis for future work. 

6. Conclusion 

The proposed fog-based computing architecture 

and application coordination mechanism 

effectively improved the computing workload 

distribution of up to 70% for fog-based 

architectures and to 40% for cloud-based 

architectures, indicating that most data processing 

is localized to fog nodes. Moreover, fog-based 

architecture provided improvements of 70%, 

compared to cloud-only architectures, indicating 

further that most data processing is localized, hence 

reducing costs related to transfer and processing to 

cloud systems. For that matter, it can be confidently 

stated that pushing data processing and intelligence 

to the edges can considerably enhance the fault 

management processes in the electrical secondary 

distributed network. 

Future work could extend the evaluation to 

include latency, makespan, miss ratio, average 

delay, and cost per execution to complement the 

equitable assessment of the proposed architecture. 

Further, areas related to limited computation 

power, energy consumption, data privacy and 

security of fog nodes and networks can be explored.  
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