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1. Introduction 

1.1 Background 

Images play a crucial role in how we process 

and retain information. Research suggests visuals 

are more engaging and memorable than text-based 

content [1]. Images captured outdoors, however, 

face unique challenges due to environmental 

factors, particularly haze, which obscures visibility 

by scattering light particles in the atmosphere [2]. 

Haze can be either homogeneous, uniformly 

affecting the image, or non-homogeneous, creating 

uneven distortion across different regions [3]. This 
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Abstract 

Restoring high-quality images from hazy environments presents a 

significant challenge, particularly when dealing with both 

homogeneous and non-homogeneous haze images. Homogeneous 

haze is uniformly distributed, while non-homogeneous haze varies 

across the image, making it difficult for existing dehazing methods 

to balance image clarity, preserve fine details, and minimize 

artifacts, such as color distortion. To address these challenges, this 

study proposes a hybrid dehazing algorithm that integrates fusion-

based techniques with Dark Channel Prior (DCP) and guided 

filtering to enhance atmospheric light estimation and refine the 

transmission map. A multi-scale fusion process is then applied to 

recover scene radiance, enhancing visual quality. Performance tests 

on standard datasets, including RESIDE and NH-HAZE, 

demonstrate the algorithm’s effectiveness, outperforming other 

state-of-the-art methods, achieving an average Peak Signal-to-

Noise Ratio (PSNR) of 26.70 dB and an average Structural 

Similarity Index Measure (SSIM) of 0.8843. These results 

underscore the algorithm's effectiveness in improving image quality 

while maintaining computational efficiency. 
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interference reduces image quality, clarity, and 

contrast. This problem restricts images to be used 

in applications requiring high clarity and accuracy, 

such as weather forecast activities and 

environmental monitoring [4]. 

Image dehazing, or haze removal, restores clear 

visuals from hazy images using techniques that 

have evolved from basic contrast adjustments to 

sophisticated models based on atmospheric 

scattering and deep learning [5]. Deep learning 

methods, such as those proposed by Zhang et al. 

[12] and Zhou [17], excel at detecting and 

removing haze, but often require high 

computational power, limiting their accessibility in 

regions with inadequate technological resources [6-

8]. Additionally, deep learning-based methods 

produce inconsistent results across different 

environments due to data variations, underscoring 

the need for alternative methods that provide 

flexibility and generalization [9]. 

To address these challenges, fusion-based 

methods are deployed, combining the strengths of 

multiple approaches to enhance dehazing 

effectiveness while maintaining computational 

efficiency [3]. Fusion methods use multi-layered 

processing to retain significant image features. For 

instance, work discussed by Dehazing et al.  [5] 

known as joint contrast enhancement and exposure 

fusion (CEEF) frameworks has demonstrated 

promising results in improving visibility under non-

uniform haze conditions, offering a balanced 

approach that integrates deep learning efficiency 

with conventional methods' reliability. 

Despite these advances, a notable gap persists: 

developing algorithms that can effectively handle 

both homogeneous and non-homogeneous haze 

[11, 12]. Most existing techniques excel in either 

homogeneous or non-homogeneous scenarios, but 

rarely perform well under both imaging conditions 

[13]. Non-homogeneous haze remains particularly 

challenging due to its variable intensity, which 

complicates the dehazing process [13]. This study 

aims to bridge this gap by proposing a novel hybrid 

fusion-based algorithm that integrates the Dark 

Channel Prior (DCP) method with additional image 

processing. Our method effectively tackles haze in 

both homogeneous and non-homogeneous images 

while keeping the algorithm unchanged. The 

system initially classifies the image as 

homogeneous or non-homogeneous, then executes 

the relevant code section for dehazing. This 

approach provides a practical and computationally 

efficient solution, improving dehazing quality for a 

range of real-world applications. 

As image processing techniques develop, the 

approach to image dehazing also evolves [6]. 

Initially, the image dehazing problem was treated 

as an image enhancement problem, using 

algorithms such as contrast enhancement and 

Retinex for defogging based on human perception. 

Later, image restoration methods based on the 

atmospheric scattering model were developed to 

solve the image dehazing problem. It involved 

mathematical techniques to recover the original 

image. Due to the complexity of the image 

dehazing problem, fusion-based solutions were 

developed as a result of researchers combining 

multiple methods into one to improve performance 

[3]. Recently, with the advancement of deep 

learning technology, the emergence of deep 

learning has revolutionized the field of image 

dehazing, leading to significant improvements in 

dehazing performance [7]. It extracts the deep 

features of a hazy image through a convolutional 

neural network to find the mapping between hazy 

and clear images, proving superiority in robustness 

and performance.  

However, deep learning methods for image 

dehazing often require complex mathematical 

models and significant computational power, 

particularly high-performance GPUs which 

contribute to long processing times [3]. This 
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complexity makes them challenging to implement 

in resource-limited setting [5]. Due to these 

limitations, fusion-based methods have emerged as 

a more practical alternative, offering simplicity and 

computation efficiency. By combining multiple 

techniques, fusion-based methods produce higher 

quality dehazed images. Moreover, Dark Channel 

Prior (DCP) with guided filtering-based approaches 

have shown competitive results when compared to 

other state-of-the-art methods. 

1.2 Related Theory 

In image processing, the atmospheric scattering 

model widely used to describe the formation of 

haze in images [8] is as follows: 

𝐼(𝑥) = 𝐽(𝑥)𝑡(𝑥) + 𝐴(1 − 𝑡(𝑥))                   (1) 

where 𝑥 is the pixel's location, 𝐼 is the observed 

intensity, 𝐽 is the scene radiance, 𝐴 is the global 

atmospheric light, and 𝑡 is the medium 

transmission. The goal of haze removal is to 

recover 𝐽, 𝐴, and 𝑡 from 𝐼(𝑥). Equation (2) is used 

to achieve this.  

𝐼(𝑥) − 𝐴 = max(𝑡(𝑥), 𝑡𝑜) (𝐽(𝑥) − 𝐴)          (2) 

The difficulty in recovering image 𝐽 lies in that 

both 𝑡 and 𝐴 parameters are unknown. A useful tool 

for computing the unknown variables is presented: 

the dark channel (DC). The DC is defined as 

follows: 

𝐽𝑑𝑎𝑟𝑘(𝑥) = 𝑚𝑖𝑛𝑐∈{𝑟,𝑔,𝑏} (𝑚𝑖𝑛𝑦∈Ω(𝑥)(𝐽
𝑐(𝑦)))      (3) 

𝐽𝑐 is a color channel of 𝐽, and Ω(x) is a local 

patch centred at 𝑥 and 𝑐𝑔{𝑟, 𝑔, 𝑏} is intensity of the 

RGB image. Dividing equation (1) by 𝐴 gives 

𝑚𝑖𝑛𝑦∈Ω(𝑥) (
𝐼𝑐(𝑦)

𝐴𝑐
) = t̃(𝑥)𝑚𝑖𝑛𝑦∈Ω(𝑥) (

𝐽𝑐(𝑥)

𝐴𝑐
) + (1 −

t̃(𝑥))                                                                   (4) 

Taking the min (∙) operation among three color 

channels on equation (4), we obtain: 

𝑚𝑖𝑛𝑐∈{𝑟,𝑔,𝑏} [𝑚𝑖𝑛𝑦∈Ω(𝑥) (
𝐼𝑐(𝑦)

𝐴𝑐
)] =

�̃�(𝑥)𝑚𝑖𝑛𝑐𝜖{𝑟,𝑔,𝑏} [𝑚𝑖𝑛𝑦𝜖Ω(𝑥) (
𝐽𝑐(𝑥)

𝐴𝑐
)] + (1 − �̃�(𝑥))  

                                                                      (5) 

According to the dark channel prior, the dark 

channel 𝐽𝑑𝑎𝑟𝑘 of the haze-free radiance 𝐽 should tend 

to be zero: 

𝐽𝑑𝑎𝑟𝑘(𝑥) =

𝑚𝑖𝑛𝑐∈{𝑟,𝑔,𝑏} (𝑚𝑖𝑛𝑦∈Ω(𝑥)(𝐽
𝑐(𝑦))) = 0              (6) 

As 𝐴𝑐 is always positive, this leads to 

𝑚𝑖𝑛𝑐∈{𝑟,𝑔,𝑏} [𝑚𝑖𝑛𝑦∈Ω(𝑥) (
𝐽𝑐(𝑥)

𝐴𝑐
)] = 0           (7) 

Putting equation (3) into (4), we can estimate 

the transmission 𝑡 simply as 

�̃�(𝑥) = 1 −𝑚𝑖𝑛𝑐∈{𝑟,𝑔,𝑏} [𝑚𝑖𝑛𝑦∈Ω(𝑥) (
𝐽𝑐(𝑥)

𝐴𝑐
)]     (8) 

We introduce a constant parameter ω (0<ω<1) 

into Equation (8), which can keep a very small 

amount of haze for the distant objects; 

�̃�(𝑥) = 1 − 𝜔𝑚𝑖𝑛𝑐∈{𝑟,𝑔,𝑏} [𝑚𝑖𝑛𝑦∈Ω(𝑥) (
𝐽𝑐(𝑥)

𝐴𝑐
)]   (9) 

The parameter ω ∈ [0,1] is empirically chosen 

to 0.95 to substantially lower the transmission map 

and prevent over-enhancement. This value, first 

proposed by He et el. [9], strikes an appropriate 

balance between haze removal and natural image 

appearance. Subsequent study has confirmed this 

decision. Lee et al. [10] examined the influence of 

several ω values and found that ω about 0.9 

efficiently reduces transmission map and improves 

visual quality. Setting ω to 0.95 achieves a good 

mix between removing haze and preserving image 

quality. 

𝐴𝑐 is considered constant in all the images and 

is estimated by first selecting the 0.01% of the map 

generated when the dark channel is computed, 

𝐼𝑐(𝑦) is the intensity of pixel 𝑦 in the color channel 

𝑐, Ω(𝑥) is a local patch centered at 𝑥. 
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With the transmission map, we can recover the 

scene radiance 𝐽 according to Equation (1) and 

Equation (3). The directly recovered scene radiance 

is prone to noise. Therefore, we restrict the 

transmission 𝑡(𝑥) to a lower bound 𝑡𝑜, which means 

that a certain small amount of haze is preserved in 

very dense haze regions. 

1.3 Related Work 

Recent studies on image dehazing have 

explored various methods to address the challenges 

of effective haze removal [11]. Zhang et al. [12] 

introduced a deep learning-based method with a 

hierarchical feature fusion network using mixed 

convolution attention to capture both global and 

local haze features, offering clearer, detailed 

images, but faced high computational costs and 

issues with non-homogeneous haze. Liu et al. [13] 

developed a fast, multi-scale patch-based fusion 

framework that avoids relying on atmospheric 

models, using contrast enhancement and exposure 

fusion (CEEF) to improve local visibility and 

global contrast. While it outperforms methods in 

homogeneous haze conditions, it struggles with 

non-homogeneous haze. Huang et al. [14] proposed 

a haze removal method using histogram gradient 

feature guidance (HGFG), which focused on pixel 

intensity histograms to preserve edges and improve 

contrast, offering superior performance to 

traditional methods but struggling with low-

contrast images and requiring precise parameter 

tuning. 

Despite significant advancements in image 

dehazing, existing methods struggle with non-

homogeneous haze, often leading to image quality 

loss and underperformance in critical applications. 

Models designed for homogeneous haze fail in non-

homogeneous conditions, and vice versa. This 

study proposes a fusion-based algorithm that 

effectively addresses both types of haze, ensuring 

high-quality, artefact-free images suitable for 

various computer vision tasks, without 

compromising computation efficiency. By 

integrating existing techniques, the algorithm offers 

an adaptive, efficient solution for haze removal. 

2. Method 

2.1 Proposed Method 

The dehazing process involves multiple stages, 

starting with two input images: hazy image 𝐼(𝑥) and 

ground truth 𝐺(𝑥), both resized by 50%. 

Atmospheric light 𝐴 is estimated from the dark 

channel of the resized hazy image: 

𝐴 = 𝑚𝑒𝑎𝑛(𝐼(𝑥𝑖)) for 𝐼(𝑥𝑖) ∈ 𝑇                 (10) 

Where 𝑇 is the set of pixels with the highest 

values in the dark channel. 

The Dark Channel Prior method was applied to 

estimate haze in the image. The dark channel 𝐷(𝑥) 

is defined as: 

𝐷(𝑥) = 𝑚𝑖𝑛𝑦∈Ω(𝑥) (𝑚𝑖𝑛𝑐∈{𝑟,𝑔,𝑏}(𝐼
𝑐(𝑦)))  (11) 

where Ω(𝑥) is a local patch centered at 𝑥, 𝐼𝑐(𝑦) 

is the intensity of pixel 𝑦 in the color channel 𝑐 

Next, the Transmission Map 𝑡(𝑥) was computed 

as: 

𝑡(𝑥) = 1 − 𝜔𝐷(𝑥)                                      (12) 

where: 𝜔 is a parameter that controls the 

amount of haze to be removed (usually close to 1). 

Then, the Refined Transmission map was 

refined 

as 𝑡𝑟𝑒𝑓𝑖𝑛𝑒𝑑(𝑥) using a guided filter: 

𝑡𝑟𝑒𝑓𝑖𝑛𝑒𝑑(𝑥) =

𝐺𝑢𝑖𝑑𝑒𝑑𝐹𝑖𝑙𝑡𝑒𝑟(𝑡(𝑥), 𝐼(𝑥), 𝑝𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒, 𝜆)             (13) 

𝑡𝑟𝑒𝑓𝑖𝑛𝑒𝑑(𝑥) =
∑ ((𝐼(𝑥)−𝜇𝐼)(𝑡(𝑦)−𝜇𝑡))𝑦𝜖Ω

𝜎𝐼
2+𝜖

             (14) 

where: 𝜇𝐼 and 𝜇𝑡 are the means of the image and 

the transmission map in a local patch, 𝜎2 is the 
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variance of the image patch, 𝜖 is a regularization 

term to prevent division by zero. Here, guided filter 

applies a local smoothing operation to the 

transmission map based on the hazy image. 

Scene radiance 𝐽(𝑥) is then recovered: 

𝐽(𝑥) =
𝐼(𝑥)−𝐴

max(𝑡(𝑥),𝑡𝑜)
+ 𝐴                                     (15) 

Post-processing steps, such as Gaussian 

Filtering,  

 Contrast Limited Adaptive Histogram 

Equalization (CLAHE), Gamma Correction and 

White Balance were applied to refine the image. 

Gaussian filtering is applied to smooth the scene 

radiance and reduce noise. 

𝐽𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑥) =
1

2𝜋𝜎2
∑ exp (−

|𝑥−𝑦|2

2𝜎2
) 𝐽(𝑥)𝑦  (16) 

where 𝜎 is the standard deviation of the 

Gaussian filter,  |𝑥 − 𝑦|2represents the squared 

distance between pixels, and the term 

∑ exp𝑦 (−
|𝑥−𝑦|2

2𝜎2
) defines the Gaussian kernel. 

This kernel determines the weights based on the 

distance between the central pixel and its 

neighbors, with closer pixels receiving higher 

weights. 

The Gaussian filter was chosen for its 

simplicity, computational efficiency, memory 

efficiency, and well-established haze removal 

performance, which provides the best balance of 

quality and cost 

CLAHE is applied to enhance contrast. 

𝐽
𝐶𝐿𝐴𝐻𝐸=∑

𝑛𝑘
𝑁
.𝐼𝑘(𝑥)

𝐿−1
𝐾=0

                                      (17) 

where: 𝐿 is the number of gray levels, 𝑛𝑘 is the 

number of pixels with intensity 𝑘 within the local 

tile, 𝑁 is the total number of pixels. Gamma 

correction is applied for brightness adjustment: 

𝐽𝑔𝑎𝑚𝑚𝑎(𝑥) = 𝐽𝐶𝐿𝐴𝐻𝐸
𝑦 (𝑥)                           (18) 

White Balance correction is then performed to 

ensure color accuracy by scaling the RGB (Red, 

Green, Blue) channels to neutralize color 

imbalances. This can be done using the gray world 

assumption      

𝐽𝑤ℎ𝑖𝑡𝑒(𝑥) = 𝑊ℎ𝑖𝑡𝑒𝑏𝑎𝑙𝑎𝑛𝑐𝑒 (𝐽𝑔𝑎𝑚𝑚𝑎(𝑥)) (19) 

𝐽𝑤ℎ𝑖𝑡𝑒
𝑐 (𝑥) = 𝐽𝑔𝑎𝑚𝑚𝑎

𝑐 .
𝜇𝑔𝑟𝑎𝑦

𝜇𝑐
                           (20) 

where: 𝐽𝑤ℎ𝑖𝑡𝑒
𝑐 (𝑥) is the corrected intensity in the 

channel 𝑐 (either R, G, or B), 𝜇𝑔𝑟𝑎𝑦 is the average 

intensity across all channels (the "gray" intensity), 

𝜇𝑐 is the mean intensity of the channel 𝑐. 

After applying the above transformations, 

the general equation for the final dehazed image 

is provided in equation (21).  

𝐽𝑓𝑖𝑛𝑎𝑙

= 𝐶𝐿𝐴𝐻𝐸 (𝐺𝐶 (𝐺𝐹 (
ℎ𝑎𝑧𝑦𝐼𝑚𝑎𝑔𝑒 − 𝐴

max(1 − 𝜔. 𝑑𝑎𝑟𝑘𝑐ℎ𝑎𝑛𝑛𝑒𝑙, 𝑡𝑜)

+ 𝐴, 𝜎𝑔𝑎𝑢𝑠𝑖𝑎𝑛) , 𝛾𝑣𝑎𝑙𝑢𝑒) , 𝐶𝑙𝑖𝑝𝐿𝑖𝑚𝑖𝑡, 𝐷𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛) 

                                                                     (21) 

where, ℎ𝑎𝑧𝑦𝐼𝑚𝑎𝑔𝑒 is the input hazy image, 𝐴 is 

the atmospheric light, which is estimated to assist 

in haze removal. 𝜔. 𝑑𝑎𝑟𝑘𝐶ℎ𝑎𝑛𝑛𝑒𝑙: Dark Channel 

Prior term used to estimate haze levels in an image, 

𝑡0: is the initial transmission map, 𝜎𝑔𝑎𝑢𝑠𝑖𝑎𝑛: is the 

gaussian filter’s standard deviation controlling 

smoothness. 

Each component in the final dehazing equation 

contributes significantly to image quality, and 

altering their values has a noticeable impact on the 

outcome. The Gaussian parameter 𝜎𝑔𝑎𝑢𝑠𝑖𝑎𝑛 

controls the guided filter, which smooths the 

transmission map and preserves edges. Removing 

it results in hazy residue or halo artifacts. Setting 

𝜎𝑔𝑎𝑢𝑠𝑖𝑎𝑛 too high can over-smooth the image and 

decrease detail, while setting it too low may not 
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effectively suppress noise. Gamma correction, 

controlled by𝛾𝑣𝑎𝑙𝑢𝑒, improves brightness and 

contrast. Without it, the image may appear dark or 

faded. A high 𝛾𝑣𝑎𝑙𝑢𝑒can provide an unnaturally 

bright image, while a low value might result in 

underexposed outputs. CLAHE, 𝐶𝑙𝑖𝑝𝐿𝑖𝑚𝑖𝑡 and the 

distribution parameters improve local contrast and 

detail visibility; eliminating it results in a flat 

appearance. An extremely high 𝐶𝑙𝑖𝑝𝐿𝑖𝑚𝑖𝑡 can 

result in over-enhancement and noise 

amplification, while a very low number gives minor 

contrast gains. Experimental results demonstrate 

that inappropriate adjustment or deletion of any 

component gives lower PSNR and SSIM scores, as 

well as inferior visual quality. This demonstrates 

that each variable makes a considerable 

contribution to performance, and optimal tuning is 

required for balanced and successful dehazing. 

It is designed to handle both homogeneous and 

non-homogeneous hazy images, effectively 

addressing varying haze levels across different 

regions while preserving image quality and 

minimizing artifacts. Figure 1 illustrates the 

systematic flow of the proposed dehazing method, 

outlining each step from input to final dehazed 

output. 

Figure 1 depicts a step-by-step flowchart for the 

proposed dehazing technique. It begins by 

importing the hazy image, which is then checked to 

ensure that it is in RGB format. If not, the image is 

transformed to RGB, and the procedure continues. 

The next stage is pre-processing, which includes 

resizing and any necessary modifications. The 

dehazing process is then carried out, followed by a 

quality validation. If the results are unsatisfactory, 

the dehazing procedure is revised. Then, post-

processing techniques, including guided filtering, 

gamma correction, and CLAHE, are used. The final 

stage is to evaluate the output using metrics such as 

PSNR and SSIM and then produce the dehazed 

image as the final output. 

 

Figure 1. Flowchart of the proposed algorithm. 

The flowchart in Figure 1 depicts the phases in 

the proposed hybrid dehazing method, which 

combines several essential parameters to optimize 

image restoration. Patch size (15) is utilized for 

local dark channel estimation and guided filtering, 

while Ω = 0.95determines the degree of haze 

removal in the transmission map,  𝜆 = 0.001 

controls smoothness during guided filtering, while 

𝛾 = 0.9 improves brightness and contrast. The 

Gaussian filter 𝜎 = 0.5 lowers noise, while the 

resize factor (0.5) speeds up processing. The 

CLAHE ClipLimit is set to 0.002 for homogeneous 

haze and 0.02 for non-homogeneous haze, with a 

uniform distribution to improve contrast. 
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3. Experiments  

3.1 Datasets 

RESIDE: A large-scale benchmark for 

synthetic and real-world hazy images. Used to 

evaluate dehazing algorithms, including 110,500 

synthetic indoor images (ITS) and 313,950 outdoor 

images (OTS). The RESIDE-Synthetic hazy 

outdoor Training Set (OTS) was employed in this 

study to experiment synthesis dataset containing 

homogeneous haze. 

NH-HAZE: A non-homogeneous, realistic 

dataset containing 55 outdoor hazy images with 

corresponding haze-free images. The haze was 

generated using a professional haze machine to 

simulate real-world conditions. This study explored 

outdoor homogeneous haze images for experiments 

3.2 Implementation Details 

The RESIDE and NH-HAZE datasets were 

used to model both homogeneous and non-

homogeneous haze conditions. The RESIDE 

dataset, which contains hazy images with a 

consistent haze distribution, was utilized to 

simulate homogeneous conditions. In contrast, the 

NH-HAZE dataset, which contains images with 

non-uniform haze distributions, was used to 

simulate heterogeneous conditions. Both datasets 

were analyzed in MATLAB, with haze levels and 

transmission maps adjusted to exactly match the 

desired conditions. The hybrid dehazing approach 

was then implemented in MATLAB. To ensure the 

reproducibility of the results, the code for this 

algorithm has been made publicly available on the 

MATLAB File Exchange community1.  

Starting with atmospheric, which was followed 

by computing dark channels and refining 

transmission maps, a scene radiance recovery was 

then performed. To improve image quality, 

 
1 
https://www.mathworks.com/matlabcentral/fileexchange/18

numerous post-processing techniques were used, 

such as Gaussian filtering, contrast-limited 

adaptive Histogram Equalization (CLAHE), 

gamma correction and white balance adjustment. 

3.3 Results  

The performance of the proposed hybrid 

dehazing algorithm was evaluated, focusing on key 

metrics such as visual quality (qualitative analysis) 

and PSNR and SSIM (quantitative analysis). 

3.3.1 Qualitative analysis  

The visual comparison of dehazed images from 

the proposed hybrid algorithm and state-of-the-art 

methods provides insight into their effectiveness in 

handling different haze types. The first column of 

Figures 1 and 2 represents the original hazy images, 

while subsequent columns show results from 

various dehazing techniques. Analysis reveals that 

some existing methods struggle with haze removal, 

introducing artifacts or failing to preserve fine 

details. In contrast, the proposed method achieves 

superior performance, producing clearer, more 

detailed images while effectively reducing haze in 

both homogeneous and non-homogeneous 

conditions, as shown in Figures 2 and 3. 

3.3.2 Quantitative analysis  

Quantitative analysis evaluates the performance 

of the proposed hybrid dehazing algorithm using 

PSNR and SSIM metrics. Higher PSNR values 

indicate better image quality with reduced 

distortion, while higher SSIM values reflect 

improved structural preservation. The efficiency of 

the proposed algorithm in improving image quality 

and preserving structural details is demonstrated by 

the consistently superior scores it receives when 

compared to state-of-the-art techniques. 

 

0061-hybrid-dehazing-algorithm-to-enhance-quality-of-

hazy-image 

mailto:jicts@udsm.ac.tz
https://www.mathworks.com/matlabcentral/fileexchange/180061-hybrid-dehazing-algorithm-to-enhance-quality-of-hazy-image
https://www.mathworks.com/matlabcentral/fileexchange/180061-hybrid-dehazing-algorithm-to-enhance-quality-of-hazy-image
https://www.mathworks.com/matlabcentral/fileexchange/180061-hybrid-dehazing-algorithm-to-enhance-quality-of-hazy-image


 JICTS 

Christopher et al. Volume 3(1) Pages 63-74 
 

70 
 

                                          2025 jicts.udsm.ac.tz  

 
Figure 2. Dehazing algorithms applied to homogeneous 

haze images. 

 
Figure 3. Dehazing algorithms applied to non-

homogeneous haze images. 

3.3.3 Analysis on PSNR results 

The final dehazed images demonstrate that the 

noise content is minimal compared to the signal 

content. This improvement was validated using the 

PSNR. Figure 4 presents the quantitative 

comparison of dehazing methods based on PSNR 

values for homogeneous and non-homogeneous 

images.  

A higher PSNR indicates better haze removal 

and image restoration. The proposed algorithm 

achieves 35.82 dB for RESIDE outdoor 

(homogeneous haze) and 17.57 dB for NH-HAZE 

(non-homogeneous haze), outperforming existing 

methods. 

 

Figure 4. PSNR Values of different dehazing  

methods. 

These results demonstrate its effectiveness in 

reducing haze while preserving image details and 

structural integrity, ensuring higher visual fidelity 

in diverse haze conditions. 

3.3.4 Analysis of Structural Similarity Index 

Measure (SSIM) results  

This section analyzes how the proposed method 

produces a dehazed image that closely resembles 

the original haze-free image. To validate this, the 

SSIM was employed. 

Figure 5 shows a quantitative comparison of 

dehazing approaches using SSIM values for 

homogeneous and non-homogeneous pictures. A 

greater SSIM suggests improved image quality and 

structural faithfulness.  

The suggested approach achieves SSIM of 

0.9800 for RESIDE outside (homogeneous haze) 

and SSIM of 0.7886 for NH-HAZE (non-

homogeneous haze), outperforming previous 

methods. These findings illustrate its ability to keep 

image structure while assuring good image 

restoration under varied hazy situations. 

mailto:jicts@udsm.ac.tz
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Figure 5. SSIM Values of different dehazing 

methods. 

3.4 Run Time 

The proposed dehazing algorithm processes an 

image in approximately 0.72 seconds, showing 

competitive runtime efficiency close to the top-

performing algorithms (Table 1).  

Table 1. Runtime of different dehazing methods. 

Algorithm Salaz

ar et 

al 

[15] 

Zhang 

et al  

[12] 

Liu et 

al 

[13] 

Huang 

et al  

[14] 

Proposed 

algorithm 

Average 

Time (s) 

0.75 2.01 1.45 0.67 0.72 

Although no single algorithm universally 

outperforms others [16], the proposed algorithm 

ranks second in speed among the five tested 

algorithms, achieving an effective balance between 

speed and dehazing quality, and providing a strong 

solution among the current methods. 

4. Analysis and Discussions 

4.1 Analysis 

The study shows that the proposed hybrid 

dehazing algorithm greatly enhances clarity, 

contrast, and colour fidelity, exceeding existing 

approaches with higher PSNR and SSIM values 

under both homogeneous and non-homogeneous 

haze circumstances. The method's strength is in the 

combination of numerous enhancement techniques, 

resulting in a versatile and efficient system that 

balances dehazing effectiveness with processing 

speed. Importantly, the suggested method's 

performance was validated not only through 

controlled trials but also on real-world datasets, 

NH-HAZE and RESIDE, where it retained superior 

visual quality and robustness over various haze 

distributions. This demonstrates its practical 

relevance to real-time and real-world dehazing 

applications. Furthermore, the method can be used 

effectively in real-world scenarios where a 

reference image is not available, with visual 

assessment offering a credible indicator of 

performance. Beyond extending theoretical 

understanding by resolving gaps in haze removal 

under various scenarios, the work provides a 

practical approach for improving image quality in 

real-world settings. While each enhancement 

module contributes to overall improvement, future 

studies incorporating ablation trials could isolate 

and evaluate their specific effects. 

4.2 Generalization capability 

The proposed hybrid dehazing algorithm has 

significant generalization capability by consistently 

producing high PSNR and SSIM values under both 

homogeneous and non-homogeneous haze 

situations, as validated on a variety of datasets 

including NH-HAZE and RESIDE. Its superiority 

stems from the strategic combination of physical 

haze removal and adaptive enhancement 

techniques, such as guided filtering for edge-

preserving refinement, Gaussian filtering for 

smooth noise suppression, white balance for color 

distortion correction, gamma correction for 

brightness enhancement, and CLAHE for local 

mailto:jicts@udsm.ac.tz
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contrast recovery. This carefully crafted 

combination overcomes the major flaws of 

traditional approaches, such as over-smoothing, 

poor color restoration, and loss of detail. As a 

result, the approach generates visually appealing 

and structurally precise results while remaining 

computationally efficient enough for real-time 

applications. The algorithm's resilience, 

adaptability, and efficiency distinguish it from 

existing approaches, as evidenced by both 

quantitative and visual comparisons. 

4.3 Limitations and Challenges 

Although the runtime is competitive, the 

proposed method ranks second in speed among the 

five tested algorithms due to the added processes 

required for enhancement. Future works could 

focus on optimizing computational efficiency by 

exploring more streamlined mathematical models 

and faster filtering techniques to further reduce 

execution time while maintaining image quality. 

5. Conclusion 

The study presents a hybrid dehazing algorithm 

demonstrating significant improvements in image 

quality, particularly in handling homogeneous and 

non-homogeneous haze conditions. Through 

comprehensive evaluations using PSNR, SSIM, 

and visual analysis, the proposed method 

consistently outperformed several state-of-the-art 

techniques, offering a robust and versatile solution. 

The research highlights the algorithm's balance 

between high-quality dehazing and computational 

efficiency, making it a valuable contribution to the 

field of image processing. These findings 

underscore the potential of the proposed method for 

various practical applications, from enhancing 

visibility in weather forecast activities to improving 

the clarity of images in photography and 

surveillance. 
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