
Received: 05 Dec 2024 Revised: 05 May 2025 Accepted: 23 Jun 2025 Published: 25 Aug 2025

Volume 3(2) Pages 1-23 DOI: https://doi.org/10.56279/jicts.v3i2.160

 JICTS
 Journal of ICT Systems

1 2025 jicts.udsm.ac.tz

Teac hing Mental Models in Introductory

Programming
Leonard J. Mselle

aDepartment of Computer Science, The University of Dodoma, Dodoma, Tanzania

1. Introduction

Learning computer programming is achieved

by obliging the student to learn a set of simple steps

expressed in statements of a certain programming

language. The learning process becomes more

complex as one progresses. The logical

combination of the code-statements is a program

which, when executed by the computer, must solve

a problem according to the programmer’s intention

[1, 2-4]. A programming novice is required to

master the syntax and semantics of a certain

Keywords

Mental models

Memory Transfer Language (MTL)

Language-trap

Cognitive Load

Program Visualization

1Corresponding author

Email: mselel@yahoo.com

Abstract

In this article, an evaluation of syllabi, books, teaching materials,

and examinations concerning introductory programming revealed

that the subject disproportionately focuses on teaching and learning

language features instead of mental models. It is demonstrated that

the shift from low-level to high-level languages resulted in the

"language-trap" that leads to an emphasis on language features at

the expense of mental models. To mitigate the language-trap effect,

a novel instructional approach called MTL three-tier that combines

low-level syntax, Memory Transfer Language, and high-level

syntax is proposed. Results from two experiments show that using

assembly codes in combination with the MTL-three-tier approach

at the beginning of the course assists instructors in avoiding the

language-trap. For novices, the cognitive load is reduced,

consequently, increasing the ability to form viable mental models.

Results from the first experiment show that novices in the

experimental group were 2.17 times more likely to form viable

mental models than those in the control sample. From the second

experiment, results show that novices from the experimental group

were 14.50 times more likely to avoid common errors in

introductory programming than were the novices in the control

group.

Funding information

This work was self-funded.

https://doi.org/10.56279/jicts.v3i2.160
mailto:jicts@udsm.ac.tz
mailto:mselel@yahoo.com

 JICTS

Mselle Volume 3(2) Pages 1-23

2 2025 jicts.udsm.ac.tz

programming language while at the same time

striving to create viable mental models. If the

mental models of the novices are unviable the

written program/code will be meaningless to the

computer.

Mental models in introductory programming

In introductory programming, mental models

entail the internal representations of a real system's

structure, organization, and behavior [2, 5]. In the

process of writing a code, there are three interacting

entities: the programmer (who creates the code), the

code (being created by programmers), and the

computer that interprets and executes the code

being created. The programmer thinks and writes

the code using a programming language that resides

in the computer. The code is interpreted by the

computer and, if it is syntactically and semantically

correct, the computer executes it, providing the

solution to the problem as intended by the

programmer. In writing a code, the programmer’s

thoughts, as expressed in statements, are fluid and

dynamic. In this regard, they are a mixture of what

is correct and what is not correct. This is what is

termed as mental model. While the programmers’

mental models are transient, the computer

interpretation of the code is rigid and static.

Cognitive load (CL) in learning programming

Introductory programming is a subject that

requires the learner to remember concepts and

remember them without the slightest ambiguity. It

requires the learner to understand and master the

concepts together with their relationships.

Programming demands one to apply the concepts

and apply them according to the rules of the

language being used and the nature of the problem

being solved. It requires one to carry out critical

analysis of the code and associate it with the

complexity of the problem being solved.

Programming demands one to be savvy in

designing a solution to solve existing problems. All

these cognitive constructs must be combined in a

non-linear fashion to achieve mastery of the

subject. This combination of different cognitive

processes is what makes programming a subject

with high cognitive load (HCL) [6-8].

Due to the HCL in introductory programming,

the formation of correct/viable mental models is

difficult. In addition to the necessity to form viable

mental models, the learner is required to master the

syntax and semantics of a programming language,

which is in itself very difficult. The need to form

viable mental models and the necessity to master

the syntax and semantics of a programming

language render introductory programming a very

challenging subject for novices [1-6, 9-12].

HCL and mental models in introductory

programming

Consider, for example, the two statements in

C/C++/Java: int x; x = 4;. From the mental model

perspective, these are two interrelated statements

because they are dependent on one variable that has

been identified by x. While the first statement aims

at reserving a storage space identified by x, the

other is aimed at inputting data in x. This

relationship is an internal representation of a

reality, both in the programmer’s mind and in the

computer. Simple and trivial as it may seem, this

relationship can take different forms in the mind of

a novice.

For example, when Bornat et al. [6] conducted

experiments on mental models using the code

segment, as depicted in Figure 1, they identified 11

different mental models based on how novices

interpreted the basic expressions with the “=”

operator.

int a, b, c;

a=5; b=3; c=7;

a=c; b=a; c=b;

Figure 1. A test question about the assignment (=)

operator [6, Figure 2 p. 3].

mailto:jicts@udsm.ac.tz

 JICTS

Mselle Volume 3(2) Pages 1-23

3 2025 jicts.udsm.ac.tz

Similar results were reported by Castrro-

Alonso et al. [8] and Dentamaro et al. [12]. Under

such a situation, if the instruction is not designed

with this complexity taken into account, the novices

generate unviable mental models that are different

from the correct solution being pursued.

Learning Edge Momentum and failure rate in

introductory programming

According to Robins [11], when CL is high, it

leads to negative learning edge momentum (LEM).

Negative LEM at the beginning of the course is a

major cause of demotivation among novices

ultimately leading to failure. Robins [11] posited

that the LEM effect, negative or positive, is self-

reinforcing.

The failure rate in introductory programming

continues to be a preoccupation of researchers [1,

2, 13]. To address the HCL in programming, there

have been numerous studies. The majority of these

are directed at programming languages as opposed

to mental models [2, 12, 14]. There are a number of

researchers who agree that effective instructional

design for introductory programming will lead to

positive LEM among novices, consequently

reducing the failure rate [11]. Together with the

selection of language, there are numerous studies

proposing program visualization (PV) as part of the

solution [9, 15-19].

Language feature versus mental models

Most programming instructors and books place

heavy emphasis on teaching language features,

based on the assumption that once novices master

these features, they will naturally develop effective

mental models. Attention to mental models is either

completely ignored or relegated to a secondary

position.

Consider the common practice of starting

introductory programming lessons with a

messaging statement, such as cout

<<Hello World”; instead of int x; followed by x =

4; The common practice of starting programming

with output statements instead of declaration and

input is one indicator of how programming lessons

are more focused on language features at the

expense of mental models.

In addition, programming examinations are an

important area where the predominance of

language features can be demonstrated. If in

examinations language syntax and semantics are

exhaustively covered, while mental models are

ignored, then this is another evidence of bias

towards language features. If mental models were

given the importance they deserve, questions

seeking to test the acquisition of mental models

would have formed a significant part of the

examinations. Looking at the original works of

programming, such as the codes by Ada Augusta

Lovelace, the presence of memory

drawings/sketches is evident [5]. However, it is rare

to find programming examinations with the

inclusion of memory drawings/sketches.

Research on the use of low-level syntax in

combination with PVs and high-level syntax in

teaching programming is scarce. Analysis of PV

research shows that the majority of these studies are

more focused on high-level syntax with the obvious

exclusion of low-level syntax. While it is widely

agreed that low-level syntax is nearer to the

machine, and therefore better at conveying viable

mental models than high-level syntax [11, 16, 20],

it remains unclear why the low-level syntax is

excluded from programming instructional design.

Research on why learning to program has been

subsumed into learning language features is scarce.

The debate on the effective use of PV to assist in

the formation of viable mental models is still

ongoing [11, 15-21]. This paper expounds on the

predominance of the language-trap (language-first

approach) at the expense of mental models in

teaching and learning introductory programming.

mailto:jicts@udsm.ac.tz

 JICTS

Mselle Volume 3(2) Pages 1-23

4 2025 jicts.udsm.ac.tz

Further, a new approach that focuses on mental

models to teaching introductory programming is

designed and tested through two empirical

experiments.

This research had three objectives: the first was

to evaluate the language-trap in teaching and

learning introductory programming and its adverse

effect on the formation of mental models; the

second was to propose and demonstrate a novel

instructional design (the MTL three-tier Approach)

based on low-level language combined with high-

level languages (HLL) and MTL PV in teaching

and learning introductory programming; the third

was to conduct two class experiments to find out

the impact of the MTL three-tier approach on

novices’ ability to acquire viable mental models

and their cognition of introductory programming as

reflected by their performance.

The rest of this article is organized as follows:

Section 2 delves into the method. Section 3 delves

into the evaluation of current approaches to

teaching and learning introductory programming.

In Section 4, the MTL three-tier approach

(Assembly + MTL-PV+HLL) is demonstrated.

Section 5 is about the experiments. Section 6 is

about results and discussion, and Section 7 presents

conclusions and recommendations.

2. Method

To attain the desired objectives, a mixed

approach methodology was followed. The first part

included a literature review combined with an

evaluation of the current teaching and learning

approaches to introductory programming. The

evaluation was carried out by checking and

critiquing various randomly selected introductory

programming syllabi, books and online videos and

notes used in universities or institutes. The second

part involved the use of the design science research

method (DSRM) to evolve and describe the

blueprint of the MTL three-tier approach. The third

part is based on class experiments, in which the

effectiveness of the MTL three-tier approach in a

classroom setting was tested.

The document analysis included a qualitative

evaluation where written and electronic documents

were checked to determine the extent to which they

emphasize language features as compared to mental

models. Randomly selected, syllabi, programming

books, online programming content, and

examinations were checked for their balanced

inclusion of worked examples, verbose discussion

of language syntax, and use of

visualization/diagrams. The details of this

evaluation are presented in Table 1.

The DSRM focuses on developing practical

solutions through an iterative process of design,

development, and evaluation. The task involved the

creation of an artifact, which is the MTL three-tier

approach. The design of the MTL three-tier

approach is detailed in Section 4.

For the third objective, two class experiments

were carried out. In the first experiment, a

convenient sample of 2,322 university students was

involved. A question on selection to test the

formation of viable mental models was

administered. The second experiment focused on

summative examinations, where randomly selected

1,200 scripts were checked for common errors

committed by novices. These errors, which imply

failure to form viable mental models, were counted

from the first two code-questions attempted by the

novices for statistical analysis and discussion.

3. Evaluation of the Traditional Approach to

Teaching and Learning Introductory

Programming

The majority of introductory programming

researchers agree that teaching and learning the

subject is difficult, and therefore the failure rate

among novices is very high [1, 6, 15-19].

Numerous researchers contend that HCL in

programming is due to the languages used to

mailto:jicts@udsm.ac.tz

 JICTS

Mselle Volume 3(2) Pages 1-23

5 2025 jicts.udsm.ac.tz

instruct. There is, however, another group who

posited that HCL in forming viable mental models

is the major cause of failure [15-22]. Since the

majority of the introductory programming research

contends that language features are the major cause

of HCL, most solutions to HCL are language-

focused [19, 20-24]. This is what this article terms

as the language-trap.

The Language-trap in introductory

programming

The language-trap in teaching and learning

introductory programming is so entrenched that it

is discernible neither during instructional design

nor during course conduct. As an example, starting

to teach programming with a message output, such

as cout << “Hello world;” instead of mov exa 4 is

almost a universally accepted standard. This partly

proves how a huge emphasis is placed on

compilation and language features instead of

mental models or computational thinking (CL). The

initial success that a novice derives from the

successful compilation of cout << “hello world”;

is short-lived once the reality of programming

unfolds. According to the LEM theory, if the

formation of viable mental models is not attained at

the beginning of the study, all the effort exerted on

understanding language features is futile due to the

high interdependence of concepts [11].

Consider, for example, the rationale of

including the coverage of all three loop constructs

(i.e., for(), while(), and do{..} while()) in the syllabi

allocating each with equal time for lectures,

tutorials and lab sessions. In fact, these three

constructs represent somewhat the same mental

model. This is just another indicator of more

emphasis invested on language features and less on

mental models.

Similarly, the majority of research on teaching

and learning introductory programming has been

more focused on languages and less so on mental

models. There are numerous papers discussing and

proposing the first language to teach introductory

programming [21], without any suggestion of

mental models. On the other hand, although PV

research is naturally about visualization of code

when running a program, most PV research and

experiments have largely been influenced by high-

level languages [15-24]. The tradition of giving

primacy to languages might have its roots in the fact

that one cannot master programming in C, C++, or

Java, for example, without mastering the syntax

and semantics of the language. Although this is an

indisputable fact, it has led most programming

instructors to trust the passive chalk-and-talk

approaches and compilation to teach the language

syntax using worked examples while ignoring the

use of combined PVs along with worked examples

in order to give required emphasis on mental

models.

Apart from books, notes, and syllabi, another

manifestation of the language-trap in teaching

programming is the assumption by most instructors

that high-level syntax is somehow an ultimate

solution to the hardships of the subject in

comparison to low-level syntax [4, 21].

Shifting from mental models language

features

When programming was undertaken using

machine/assembly languages, mental models

constituted the core of the learning process [5]. It is

impossible to write correct low-level code without

first having the correct mental model of the effect

of the statement being written. With the advent of

high-level syntax and its use in teaching

programming, language features became the major

preoccupation. As a consequence, most solutions

suggested for programming are concerned with

language features instead of mental models. In most

literature, among the prominent reasons given for

failure are as follows: abstract nature of

programming; first language used to teach;

mailto:jicts@udsm.ac.tz

 JICTS

Mselle Volume 3(2) Pages 1-23

6 2025 jicts.udsm.ac.tz

dynamic nature of the subject; poor instructional

design; poor curriculum implementation that fails

to address the complexity of the subject; and

inadequately prepared learning materials [17, 25].

Although not explicitly acknowledged, the

language-trap problem in introductory

programming can be found in studies by Kraleva et

al. [21] and Mtaho and Mselle [17], who concluded

that instructional design and programming

examinations across universities and among

instructors are vastly varied.

The undeclared and unintended language-trap

could be the major reason that most solutions

addressing difficulties in learning programming are

language-focused instead of mental-model focused.

Transition from machine/assembly syntax to

high-level languages

In the beginning, the ability to program a

computer required mastery of the machine

language [5]. Due to the complexity of machine

syntax, machine language was replaced by

assembly language, which is a machine language

based on mnemonics.

The need to avoid the difficulties of mastering

machine or assembly language vocabulary gave

rise to high-level languages. These languages were

favored over low-level languages due to their two

important features. One is their syntax, which is

made of English words instead of mnemonics or

machine vocabulary. The second is the introduction

of code blocks, which facilitate structured

programming. With the introduction of high-level

languages, it was expected that learning

programming would be easier. However, the

adoption of high-level syntax did not improve

comprehension of programming [2, 6].

Among the introductory programming

community, research on the revival of assembly

languages, which are inherently associated with

machine language, is scarce. Most researchers have

ignored the possibility of proposing a partial return

to machine or assembly language as a bridge

toward the formation of viable mental models and

eventually assisting novices to work more

comfortably with high-level languages.

Among various efforts to reduce failure among

novices, one has been to reduce the impact of

abstraction that is caused by languages. To this end,

teaching programming has traditionally been

combined with some sort of visualization. There are

various studies on the use of program visualization.

Some of these have been compiled, analyzed, and

evaluated [9, 17]. However, a proposal for the

combination of PV with low-level syntax to assist

novices in forming viable mental models is

nonexistent. The shift from low-level syntax, which

resulted in a shift from mental models to high-level

language, culminated with an instructional design

that is devoid of mental models.

When an evaluation to find out the balance

between language features and mental models in

teaching and learning materials (syllabi, books,

notes/videos, and examinations) was carried out, as

revealed in Table 1, none of the syllabi representing

eight randomly selected institutions had mental

models, visualizations or sketching as part of

teaching in general and imparting mental models in

particular. On the contrary, all syllabi contain

detailed coverage of the language features (syntax)

even at the degree of redundancy; For example,

loops. The same biases were observed on a sample

of six randomly selected books, six teaching videos

and examinations-samples taken from twelve

prominent institutions worldwide.

From these results and the evidence shown in

the reviewed literature, it can be concluded that,

currently, mental models in teaching and learning

programming have received less attention in

comparison with language features.

mailto:jicts@udsm.ac.tz

 JICTS

Mselle Volume 3(2) Pages 1-23

7 2025 jicts.udsm.ac.tz

4. The MTL three-tier approach (Assembly +

MTL-PV+HLL)

In programming, mental models are depictive

representations assumed to contain a visual-spatial

structure analogous to the ideas presented in the

code-text. Thus, understanding a text segment of a

code often requires translating the text into a

coherent mental image [2]. Generally, a mental

model of anything is represented by an image

(drawing/sketch) or a tangible object/model. In

programming, the use of drawings to represent the

effects of the code has been in use for decades [5].

With the advent of high-level languages, the use of

flowcharts and trace tables was intended to address

the issue of mental models [2, 15-19].

While there is general use of flowcharts in

teaching and learning introductory programming,

flowcharting has two limitations. Firstly,

flowcharting was introduced almost at the same

time as high-level languages. Just like high-level

languages, flowcharting is too much abstracted

from the machine. As a result, flowcharting cannot

represent the concrete idea of an instruction or an

expression. Secondly, flowcharting uses more than

20 symbols with different rules for combining each

of them. This increases the CL of the subject. For

these reasons, although flowcharting is as old as

high-level programming, its success and

application are limited [2]. For example, consider

basic code statements, such as variable declaration:

int x, y, z; data input: x = 2; y = 3; and processing

and outputting: z = x + y; Figure 2 depicts the

visualization of these statements using an MTL PV

in comparison with a flowchart. From Figure 2, it

is evident that flow charting is more complex than

the MTL PV.

Figure 2. Visualization of the code segment (MTL

left-hand side) compared with (flowcharting right-hand

side).

Basic design and pillars of the MTL three-tier

approach

As shown in Figure 2, MTL is a PV depicting

computer RAM as code is executed. MTL PV uses

one symbol (rectangles) to mimic the computer

RAM to represent the learner’s mental model. That

is his/her mental representation of the structure of

computer memory, its organization, and behavior

due to actions of declaration, inputting, processing,

and outputting (the code).

Together with rectangles, MTL relies on a

familiar symbol (containers or physical models as

depicted in Figure 4) to portray the transformation

of the computer RAM as each code statement is

translated and executed. This use of familiar objects

for visualization reduces the CL because the

diagram frees the working memory, allowing it to

deal with the novel part of the content. In addition,

MTL allows the novice to use any sort of small

container, such as bottle caps, to mimic the

computer RAM and use physical objects such as

pebbles or stones as inputs or outputs (Figure 4).

The same RAM diagrams can be animated using

tools such as Celiot as depicted in Figure 8.

As depicted in Figures 4-7, 10, and 11, the MTL

PV assists the instructor in using multimedia (text-

visual-audio) and multiple senses (text-visual and

kinesthetic/tactile) to channel more effort to the

formation of mental models, reducing the CL and

increasing the chance for a positive LEM. On the

contrary, flowcharting employs four symbols in

this case, which increases the extraneous cognitive

load. In addition, flowcharting is not matched with

the idea of computer RAM, hence abstracting the

learner from the computer. Furthermore,

flowcharting conveys different meanings to

different novices. This is one reason that, although

flowcharting is the most used visualization scheme

in introductory programming, its use has not been

effective [2].

If teaching and learning introductory

programming were designed and carried out with

the primary objective of building mental models,

then each aspect of programming, that is, variables,

The code segment

int x, y, z; FREE RESERVED x 2 x 2 x Input

x=2; FREE RESERVED y 3 y 3 y

y=3; FREE RESERVED z RESERVED z 5 z

z=x+y; FREE FREE FREE FREE Process

Empty RAM Declaration Inputting Processing (x+y)

int x,y,x; x=2; y=3; and Outputting

z=x+y; Storage/output

MTL visulization of the code Flowchart visualization

2, 3

2+3

5

mailto:jicts@udsm.ac.tz

 JICTS

Mselle Volume 3(2) Pages 1-23

8 2025 jicts.udsm.ac.tz

data feeding, data processing, outputting, sequence,

selection, loops, arrays, functions, and file

handling, would be presented with drawings similar

to the ones in Figures 4-7, 10, and 11 and, where

every worked example is visualized using the MTL

RAM diagrams. The fact that most programming

materials in books and learning resources do not

make visualization compulsory is yet another proof

of the influence of the language-trap. Due to the

language-trap, most of the proposed PV solutions

are language-tuned instead of being model-focused.

The use of the MTL three-tier approach is based

on three pillars, which include (1) assembly codes,

(2) high-level codes (worked examples), and (3) the

MTL PV. The MTL PV is used to visualize the

basic programming structures and mechanisms

using code segments, physical models, RAM

diagrams, and animations.

Assembly code + MTL physical models

As exemplified and depicted in Figure 3, a basic

assembly code is associated with a physical model

in Figure 4. Registers/variables are labeled

manually and inputted with pebbles to analogize

input. Similarly, the process is analogized by the

increment of pebbles in the destination containers.

This physical model can be represented in an MTL

RAM diagram as depicted in Figure 5. The MTL

depiction is language independent.

1: MOV eax, 2

 MOV ebx, 3

 ADD eax, ebx, ecx

Figure 3. An example of assembly code: a simple

calculator.

Worked examples of High-level codes + MTL

RAM diagrams

As is the case for the assembly codes, the basic

high-level codes (in any chosen programming

language) can be combined with RAM diagrams to

visualize the structure, organization, and the

internal behavior of the code segment (mental

model). As depicted in Figure 5, an example a basic

Figure 4. An example of RTL physical models

mimicking computer registers on execution of the

assembly code in Figure 3.

code (sequence) is depicted from the declaration,

data inputting, processing, and outputting. Figure 6

is an example of a depiction of selection (if()

construct), and Figure 7 is the visualization of loops

(while() construct). The same can apply to the

concepts of arrays, file handling, and pointers. In

addition to the depiction of code-logic, MTL PV

can be used by instructors to depict unviable mental

models and guide novices to avoid them as depicted

in Figure 11.

Figure 5. Example of MTL visualization of

elementary variables behavior.

I II III IV

THE CODE

of the code int l, m, p; l=2; m=3; p=l+m;

1 int main() cout<<p;

2 { Free RESERVED l 2 l 2 l

3 int l; Free RESERVED m 3 m 3 m

4 int m; Free RESERVED p RESERVED p 5 p

5 int p;

6 l=2;

7 m=3;

8 p=l+m;

9 cout<<p;

10 }

RAM before execution RAM after execution of RAM after execution of RAM after execution of

5

mailto:jicts@udsm.ac.tz

 JICTS

Mselle Volume 3(2) Pages 1-23

9 2025 jicts.udsm.ac.tz

Figure 6. Example of MTL visualization of

selection.

Figure 7. Example of MTL visualization of loops.

MTL high-level codes and animations

Computer animation is a powerful tool for

simplification of cognition [15-17]. Using celiot

animation tool, Masoud and Mselle [15]

demonstrated that computer animations

significantly reduced the cognitive load.

Figure 8. Example of Celiot animation of a while

() loop [16, p. 245].

High-level codes + MTL-PV and Mental

models

Since mental models constitute the core of the

MTL three-tier approach, instructors are

encouraged to use these tools to point out the

common unviable mental models that persist in

novices' minds. Figure 11 is example of such

predictable, unviable mental models that can be

depicted, discussed, and discouraged by the

instructors.

Figure 9. The code for the first test question

(selection).

Figure 10. Example of the correct MTL

visualization of the code and the (only) viable mental

model.

I II III IV

THE CODE

the code int l, m, p; cin>>l; if(l>m);

int main() cin>>m;

{ Free RESERVED l 2 l 2 l

int l; Free RESERVED m 6 m 6 m

int m; Free RESERVED p RESERVED p RESERVED p

int p;

cout<<"Enter two integers"; V

cin>>l; RAM after execution of Execution of

cin>>m; p=m-l; cout<<p;

if(l>m) 2 l 2 l

p=l-m; 6 m 6 m

else 4 p 4 p

p=m-l;

cout<<p;

}

RAM before execution of RAM after execution of RAM after execution of RAM ON execution of

4

THE CODE

of the code int j, k; j=4; k=1; while(k<3)

int main()

{ FREE RESERVED j 4 j 4 j

int j, k; FREE RESERVED k 1 k 1 k

j=4; FREE FREE FREE FREE

k=1;

while(k<4){ Execution of Execution of Execution of Execution of

j=j+k; j=j+k; k=k+1; j=j+k; k=k+1;

k=k+1; 5 j 5 j 7 j 7 j

} 1 k 2 k 2 k 3 k

cout<<j; FREE FREE FREE FREE

}

cout<<k;

7 j

3 k

FREE

while(k<3)

RAM before execution RAM after execution of RAM after execution of RAM ON execution of

SCREEN

7

Code Segment Correct MTL interpretation of the code segment

char c;

cou<<"Enter U for USA"; RAM char c; cin>>c; SCREEN

cout<<"Enter C for Canada"; FREE RESERVED c U c

cout<<"Enter M for Mexico"; FREE FREE FREE if(c=='U')

cin>>c; FREE FREE FREE cout<<…

if(c=="U")

cout<<"USA"; cin>>c; if(c=='C')

else if(c=='C') C c cout<<…

cout<<"Canada"<<endl; FREE

else if(c=='M') FREE

cout<<"Mexico"<<endl; if(c=='M')

cin c; cout<<…

M c

FREE

FREE

USA

Canada

Mexico

mailto:jicts@udsm.ac.tz

 JICTS

Mselle Volume 3(2) Pages 1-23

10 2025 jicts.udsm.ac.tz

Figure 11. Example of MTL visualization of

unviable mental models.

5. Experiments

To test the effectiveness of MTL three-tier

approach, two class experiments were conducted.

The first experiment tested the viability of mental

models acquired by novices. The experiment was

carried out in University X (masked to avoid bias).

The second experiment tested the ability of novices

to avoid common errors in introductory

programming. This experiment compared errors

from a sample of students from University Y and

University X.

Samples

With regard to the first experiment, a

convenient sample of 2,322 university students was

involved. Of these, 1110 constituted the treatment

group, which comprised students admitted to

University X in the academic year 2022/2023. The

treatment group comprised 254 female students and

856 males. The control group, numbering 1,212

students, comprised the first-year students admitted

to the same university in the academic year

2021/2022. This sample comprised 272 females

and 730 males. Nineteen (19) students from the

treatment group and eleven (11) students from the

control group had prior exposure to programming

in high school. This prior knowledge was ignored

in this experiment since these numbers are too

small to affect the outcome. All students had some

prior experience with mobile phones and electronic

calculators. The average age of the samples was 21

years.

With regard to the second experiment, the same

experimental group of 1,110 students from

University X were used. The control group

comprised 600 students from University Y, where

the visualization approach was not mandatory.

Without regard to the difference in the questions of

these two groups, a random sample of 600

examination scripts was drawn from the treatment

group of University X, and a similar random

sample of 600 scripts was drawn from the control

group of University Y. Students’ answers in the

scripts were evaluated for fundamental errors as

detailed in Table 2.

Materials

The materials that were used included

programming textbooks, specifically those written

with worked examples that were analyzed using

MTL-RAM diagrams. In addition, students were

encouraged to use books, such as those listed in

Table 1, for self-reading and assignments. Students

were encouraged to listen to lectures, such as from

instructors on YouTube (Table 1).

The University X has four computer labs, each

with 150 desktops, all loaded with Borland C++

compiler. These labs are accessible to all students

for 14 hours, except on weekends. A random check

established that at least one of the three students had

a laptop. For the treatment group, in addition to the

Boland C++ compiler, students were obliged to

first dry-run the code segment (in assembly syntax),

as depicted in Figure 3. The dry run was done using

physical models (Figure 4). Every novice in the

treatment sample was obliged to come up with

RAM char c;

Misconception (1): that each input FREE RESERVED U

option (U, C and M) must be an identifier FREE RESERVED C

representing a variable FREE RESERVED M

char c;

Misconception (2): that each RAM RESERVED USA

output coming from output FREE RESERVED CANADA

stream as a message (USA, Canada FREE RESERVED MEXICO

and Mexico) is and identifier/variable FREE

Misconception (3): that each possi- RAM char c;

ble output from output stream must FREE RESERVED

first be in an input in a variable FREE RESERVED

FREE RESERVED

SCREEN

cout<<…

USA

Canada

Mexico

Students' unviable mental model using MTL

USA

Canada

Mexico

mailto:jicts@udsm.ac.tz

 JICTS

Mselle Volume 3(2) Pages 1-23

11 2025 jicts.udsm.ac.tz

physical models to mimic computer registers and

RAM (Figure 4).

Concerning the control group, the timetable,

books, learning materials, coverage, tutorials, and

laboratory sessions are the same as those of the

treatment group, except that the assembly code

(Figure 3) and the corresponding physical models

(Figure 4) were excluded. In addition, the MTL and

animations were not mandatory, although these are

present in some of the books and lecture videos.

Procedures

The two universities follow a 16-week

semester, and the credit hours allotted for the

programming course are 10. This means that

lectures are allotted 2 hours, tutorials 2 hours,

laboratories 2 hours, and individual study 6 hours,

for 12 hours per week. Study weeks are 14, and two

weeks are reserved for summative final

examinations. This means that programming is

studied for 168 hours. The first experiment was

based on a test question about bifurcation or

selection, where viable and unviable mental models

were the basis of comparison.

The second experiment was based on the errors

committed in the summative examination (Table

2). The errors were counted from the first two code

questions attempted by the novices for statistical

analysis.

For the treatment group, during the initial

introductory session, which took 6 hours. In the

first 40 minutes, novices were briefly introduced to

computer organization, where it was shown that the

computer memory is a combination of registers and

RAM. As part of this experiment, memory

hierarchy was avoided. Each student was tasked to

perform some simple calculations (additions and

subtractions) with a mobile phone.

After this introductory session, the remaining

time of the initial two hours of lecture was carried

out such that two worked examples using assembly

language, as exemplified in Figures 3 and 4, were

carried out. To improve comprehension, physical

models similar to the one in Figure 4 were

employed to mimic registers. Two examples were

exhaustively used to mimic the RAM. One class

activity where students were asked to construct

their own scenarios on physical models and RAM

diagrams for simple addition problems in assembly

codes was conducted.

During the initial two hours of tutorials, more

examples of simple calculators performing

arithmetic operations, including subtraction and

multiplication, were discussed with different data.

These same codes were used in the initial two hours

of the laboratory, where novices were allowed to

write and compile the codes that were discussed

and drawn during tutorials. After compilation in

Borland C++ and in Celiot (Figure 8), these

examples were explained using MTL RAM

diagrams, as exemplified in Figures 5-7, 10, and 11.

For self-reading, after each topic, students were

made to find a code from any book in the library

and depict its behavior using RAM diagrams and

physical models. For each programming aspect of

sequence, selection, loop, arrays, functions, and file

handling, each student was required to present one

worked example (code), construct its

corresponding physical model, depict the model

using MTL RAM diagrams (Figures 5-7] and

finally compile the code in Celiot and Boland C++.

For each assignment, students were given one week

for submission.

The control group was taught for the same

length of time. Lectures, tutorials, and labs were

organized such that the use of MTL and flowcharts

was not mandatory, although the reference books,

teaching notes, laboratory sessions, and work

examples were the same. Although MTL and

flowcharting visualization were used by the

instructor, their use in labs, tutorials, and self-

mailto:jicts@udsm.ac.tz

 JICTS

Mselle Volume 3(2) Pages 1-23

12 2025 jicts.udsm.ac.tz

reading was not mandatory. Students were not

asked to create MTL models, although they were

taught and encouraged to use Celiot animators

during lab sessions. Compulsory lectures, tutorials,

and labs were finalized by the 10th week of study

for both groups.

The first experiment

In the third week, after covering selection, the

selection question was administered (Figure 9).

Students were asked to use any means to show the

dynamic characteristics (data movement) of the

variables of the code and how the output was

obtained. Students were allowed to use any means

they found convenient (including verbal narrations)

to answer the question.

The second experiment

Without regard to the difference in the

examination questions, a random sample of 600

examination scripts was drawn from the treatment

group of University X, and a similar random

sample of 600 scripts was drawn from University Y

as control sample. The treatment group was the

same in the first experiment. From each script and

the first two (coding) questions attempted by a

novice, any error in the category listed in Table 2

(error due to an unviable mental model) was

identified and counted.

6. Results and Discussion

Answers to the question in the first experiment

were grouped into three categories: MTL

visualizations, verbal narrations, and other

visualizations, such as flowcharts and trace tables.

Table 3 summarizes the categories of answers and

the number of students who preferred such an

approach.

Statistical results from the first experiment are

summarized in Table 4 while results from the

second experiment are summarized in Table 5.

As results from the first experiment in Table 4

show, it can be concluded that the treatment group

had a significantly smaller number of unviable

mental models compared with the control group.

Specifically, in the control group, 687 out of 1,110

scripts, that is, 61.89% of the students, had errors

due to unviable mental models, whereas in the

treatment group, only 345 out of 1,212 students

(28.47%) manifested unviable mental models. The

relative risk is 2.17 with a 𝑝-value of less than

0.0001. This means that students in the treatment

group were 2.17 more likely to form the correct

mental model in comparison to the control group.

As results in Table 5 show, in the second

experiment from the control group, 411 out of 600

scripts (68.50%) had errors committed due to

unviable mental models. In contrast, from the

treatment group, only 87 out of 600 scripts

(14.50%) had such errors. The relative risk is 14.50,

implying that students in the treatment group were

14.50 times more likely to avoid committing one or

more of the errors listed in Table 2 in comparison

to those in the control group. The 𝑝-value for the

comparison between the control and treatment

groups is less than 0.0001, indicating a highly

significant difference in error rates.

These experimental results strongly suggest the

MTL three-tier approach played a significant role

in reducing unviable mental models and improving

cognition among novices, and consequently

reducing the failure rate of the subject.

Although learning to program and learning a

programming language are interrelated and

interdependent, it is obvious that learning to

program is more than learning a certain

programming language. As shown in the

evaluation, due to the “language-trap,” the majority

of programming instructional design is biased

towards covering the language syntaxes and

semantics rather than imparting appropriate mental

models.

mailto:jicts@udsm.ac.tz

 JICTS

Mselle Volume 3(2) Pages 1-23

13 2025 jicts.udsm.ac.tz

Table 1. Evaluation of teaching and learning materials (syllabi, books, notes/videos, and examinations).

SN The Institution Exhaustive coverage of

language syntax, (i.e. the 3

loop constructs)

Starting with output as opposed to

variables, input, process

Consistent use of visualization

(PV/animations) to discuss variables and

their roles)

1 NCC ✓ NA X

2 MIT ✓ NA X

3 University of Karachi ✓ NA X

4 MooC ✓ NA X

5 The Open University ✓ NA X

6 London School ✓ NA X

7 Ahmadu Bello University ✓ NA X

9 University of Nairobi ✓ NA X

10 University of Cape Town ✓ NA X

11 Delhi University ✓ NA X

12 Dublin Institute of

Technology

✓ NA X

Books

1 Codding basics for beginners

by

Ryan Roffe, 2023

✓ ✓ X

2 Computer programming for

beginners by C. Konnors,

2023

✓ ✓ X

3 Phyton programming for

beginners by Kevin Wilson,

2024

✓ ✓ X

4 Codding for beginners, Mike

Mcgrath, 2015

✓ ✓ X

5 Computer programming for

beginners, Murali Chemuturi,

2018

✓ ✓ X

6 C++ Programming: From

Problem Analysis to Program

Design, by Malik DS, 2017

✓ ✓ X

Videos/Notes/Lectures

 Exhaustive coverage of

language syntax,

Starting with output as

opposed to variables,

input, process

Use of visualization (PV animations)

mailto:jicts@udsm.ac.tz

 JICTS

Mselle Volume 3(2) Pages 1-23

14 2025 jicts.udsm.ac.tz

1 https://programming-24.mooc.fi/ ✓ ✓ X

2 https://www.youtube.com/watch?v=EjavYOFoJJ0 ✓ ✓ X

3 https://www.youtube.com/watch?v=EjavYOFoJJ0 ✓ ✓ X

4 https://www.youtube.com/watch?v=K5KVEU3aaeQ ✓ ✓ X

5 https://www.youtube.com/watch?v=4JzDttgdILQ ✓ ✓ X

6 https://www.khanacademy.org/computing/computer-

programming/programming/intro-to-

programming/v/programming-intro

✓ ✓ X

Examinations

 Exhaustive coverage of

language syntax, (i.e. the 3 loop

constructs)

Questions starting with the

verb show/analyze/evaluate

Question demanding explicit depiction of memory (RAM)

1 NCC ✓ X X

2 MIT ✓ X X

3 University of

Karachi

✓ X X

4 MooC ✓ ✓ X

5 The Open

University

✓ ✓ X

6 London School ✓ ✓ X

7 Ahmadu Bello

University

✓ X X

9 University of

Nairobi

✓ X X

10 University of

Cape Town

✓ ✓ X

11 Delhi

University

✓ ✓ X

12 Dublin Institute

of Technology

✓ ✓ X

mailto:jicts@udsm.ac.tz

 JICTS

Mselle Volume 3(2) Pages 1-23

15 2025 jicts.udsm.ac.tz

Table 2. Errors due to unviable mental models.

SN Topic areas Question Average time

spent on the

topic (minutes)

Number of

examples

Examples of

related errors

Number of errors counted

from students

Description of the unviable

mental model

1 Variables,

declaration,

data inputting,

outputting

Declare an integer

variable called x

and input data in

it using

assignment or

cin>>

15-60 3-5 int x;

x=4; followed by

cin>>x; or

int x; followed by

i=0;

Treatment

(600)

Control (600) (1) Some novices fail to discern

that cin>> and assignment (=)

perform the same task of

imputing.

(2) Others think that x can contain

more than one value

simultaneously

(3) Others fail to reference

variables for their intended

purpose

24 119

2 Outputting

from variables

when mixed

with messaging

Consider the code

segment:

char c; cin>>c;

If (c==”U”)

cout<<”USA”;

else if(c==”K”)

cout<<”UK”;

What is the output

of this code?

15-60 2-4 U or K or U and K 46 134 Some novices fail to discern the

source of a message when this is

embedded in the code as an

output resulting from a variable

evaluation

3 Incrementing

and

decrementing a

variable

int i=0;

i=i+1; or ++i;

What is the value

of i?

4-5 1-3 i=i+1; or or ++i; 23 150 Since this expression involves

variable overwriting and

incrementing/decrementing,

some novices fail to assimilate

this computing reality

4 Variable

overwriting

and copy

retention

int x, y; x=5; y=4;

x=y; cout<<x;

cout<<y;

What is the output

from x?

1-5 1-3 1. 5 is co-existing

with 4 in x (5, 4)

2. 5 is still alone in x

3. x contains both 5

and the letter y

45 160 Similar to 3

5 Variable-to-

variable

assignment

int x, y; x=4; y=x;

cout<<y;

what is the output

from y?

1-6 0-15 0-2 4. x or y or xy 56 166 Similar to 3

mailto:jicts@udsm.ac.tz

 JICTS

Mselle Volume 3(2) Pages 1-23

16 2025 jicts.udsm.ac.tz

Some researchers have pointed out that the

instructional design in introductory programming

does not sufficiently emphasize on teaching such

that correct mental models are the primary

objective [12, 20, 21, 15-19, 26]. Syllabi for

introductory programming, teaching materials, and

techniques that are geared toward the formation of

mental models are treated as secondary. The

programming books, teaching materials, and notes

show that beginning programming classes with

output statements such as cout<<“Hallo World”; is

a standard. As shown in this article, starting to teach

programming with declaration (i.e., int x), followed

by input (i.e., cin >> x;/x = 4), and later followed

by output (i.e., cout << x) is more productive since

it covers both language features and mental models

equally.

Due to the language-trap, even when some

instructors use visualization tools, such as

flowcharts, these are both sparingly used and

wrongly employed as an end to themselves rather

than a means for the formation of viable mental

models [2, 7].

From the first experiment, statistical results are

summarized in Table 3. From second experiment,

results are summarized in Table 4. The central

claim of this paper is that teaching and learning

introductory programming has disproportionately

been more about teaching and learning language

features and less about mental

models/computational thinking. It is further

claimed that this language-trap is the cause of high

CL and negative LEM and, subsequently, a high

failure rate in programming. This language-trap is

not easily detectable due to the fact that it is hidden

in the historical emergence and convenient use of

high-level languages in programming. Due to the

language-trap, even most of the solutions that have

been prescribed, including PVs, have been

insufficient [20].

Table 3. Categories of answers and the number of students by group.

Category of answer Total (N) MTL

visualization

Verbal

narrations

Other

visualizations

Right Wrong

Control 1110 529 511 70 423 687

Treatment 1212 1187 25 00 867 345

Table 4. Proportion of students with errors counted from the first experiment by group.

Experiment group Total (N) Counted errors

N (%)

Relative Risk, RR (95% CI) P-Value

 Control 1110 687 (61.89) 2.17 (1.97, 2.40) <0.0001

 Treatment 1212 345 (28.47)

Table 5. Proportion of students with error counted from examination scripts by experimental group.

Experiment group Total (N) Counted errors

N (%)

Relative Risk, RR (95% CI) P-Value

 Control 600 411 (68.50) 14.50 (3.86, 5.78) <0.0001

 Treatment 600 87 (14.50)

mailto:jicts@udsm.ac.tz

 JICTS

Mselle Volume 3(2) Pages 1-23

17 2025 jicts.udsm.ac.tz

The notion that learning to program is

synonymous with learning a programming

language is prevalent among programming

instructors, partly due to the oversized role of high-

level languages in introductory programming.

MTL three-tier approach

Instead of the traditional approach, this study

proposes an instructional design that combines

initial codes in low-level language, visualized by

both MTL physical models (Figure 3) and MTL

PV, followed by worked examples in high-level

language consistently visualized by MTL PV.

This novel instructional design allows for a

multisensory approach to teaching and learning

programming. As the results from the two

experiments show, the performance of the

treatment group was significantly better compared

to the performance of the two control groups. Some

PV skeptics contend that PVs in programming have

not been widely accepted due to the need for

drawing and re-drawing. The fact that some

researchers and instructors are complaining about

redrawing implies that to them, PVs are not used as

a means to create correct mental models but rather

as vehicles to understand a programming language

instead. If mental models were to be treated as a

mandatory aspect of teaching and learning

programming, then drawing would be a mandatory

aspect of all programming syllabi.

As demonstrated in both experiments, in order

for the effort to be directed at mental models, the

MTL PV uses familiar examples of low-level

syntax combined with MTL visualization, which is

tied to mental models. As exemplified in Figures 5-

8, MTL PV can be employed throughout lectures,

tutorials, labs, and self-reading for every aspect of

programming. MTL diagrams and physical models

are just used as instruments to enforce the mental

model-building process. Constant and mandatory

use of these visualizations do not demand more

time or any alteration of programming syllabi

because they are just part of the general discussion

[9, 16]. With an effective focus on mental models

using a combination of low-level syntax and MTL

PV, a positive LEM is guaranteed and, therefore,

the possibility for more novices to comprehend the

subject.

As revealed in the first experiment, unviable

mental models, such as the ones depicted in Figure

11, indicate that even after spending numerous

hours teaching novices, the majority of them fail to

form viable mental models concerning the

combination of variable declaration (int/char), data

input, data overwriting, and message output. Only

if a novice is able to portray the correct flow of

events, as depicted in Figure 10, can it be concluded

that the student has acquired viable mental models

concerning a scenario such as the one represented

by the question represented in Figure 9. If a student

has failed to form these correct mental models, then

his or her LEM has come to a dead end, and it is

futile for such a student to continue classes

concerning loops and array functions, among

others, because all these depend on the viable

mental models. Normally, students who have not

acquired the required mental models for basic

concepts are allowed to continue their studies as the

focus is to cover the language syntax instead of

consolidating mental models. A similar argument

can be made in the case of the second experiment.

Machine or assembly syntax and mental

models

There exists a cause-and-effect relationship

between unviable mental models and errors that a

novice commits [12, 25]. As may be found from

literature and experiments, writing correct code in

machine or assembly language goes hand in hand

with having viable mental models [2, 5, 10]. This is

because the language used to communicate with the

computer is the language of the computer itself. It

mailto:jicts@udsm.ac.tz

 JICTS

Mselle Volume 3(2) Pages 1-23

18 2025 jicts.udsm.ac.tz

is therefore inferred that anyone learning

programming using machine or assembly language

is obliged to first direct effort on mental models and

later on the language features [5]. However, when

one is using a high-level language, the reverse is

true. The instructors emphasize more on syntax and

less on mental models.

High-level language introduces abstraction and

more cognitive load through variables and their

different types, which increases the possibility for a

novice to form alternative mental models that are

unviable [4]. Although low-level languages have

tedious syntaxes, their use at the initial level of

learning programming is easier and more

straightforward than in high-level languages

(Figures 3 and 4). Using low-level syntax during

the initial stage of programming (data storage

space, data input, data processing, and outputting

of results from inside the machine registers)

requires fewer concepts and fewer associations than

it does with high-level languages. In addition, low-

level syntax bears a closer analogy with calculators

(which are more familiar) than high-level

languages and their hello world examples. This

focus on mental models using concrete, familiar

concepts (calculators and rectangles) reduce CL

and, therefore, increases the chance of positive

LEM. However, as the lessons progress to more

complex aspects, such as selection and loops, low-

level syntax must be replaced with high-level

syntax because this is much easier to use and

construct. Since at this stage the novice will have

formed initial viable mental models, the LEM is

maintained, and learning is not negatively affected.

Take, for example, the assembly code depicted

in Figure 3. The number (1) is a label that instructs

the computer where the execution should begin.

This is a detail that can be ignored in the

visualization because it will be part of any code.

The code segment is visualized using an MTL

physical model (Figure 4). MOV exa, 4 is an

instruction that stores integer 4 in the register exa;

MOV exb, 7 instructs the computer to store integer

7 in the register exb. ADD exa, exb, exc instructs

the machine to add the content of exa and that of

exb. Finally, the output is stored in exc, which is

again a fundamental concept that must be

understood without ambiguity. Actually, telling a

novice that the computer has in-built storage space

(registers), as depicted in Figure 4, is more familiar

than telling a novice about the declaration of

variables, types of variables, and accessing them, or

cout << Hello world.”

Not only are these concepts responsible for

increased CL and consequently the formation of

unviable mental models, but due to the language-

trap, variables attract instructors and learners to

engage in data types prematurely, further

increasing the CL while reducing resources from

the early formation of viable mental models.

Consider the elementary assembly code in

Figure 3. The visualization of this code using MTL

to portray the basic programming mental models is

more familiar to novices compared to its version in

high-level languages, as demonstrated in Figures 2

and 4.

Figure 12. Visualization of the assembly code using

RTL.

The concept of variables and variable

declarations, with their associated data types, may

seem simple to an expert. Nevertheless, as

demonstrated, in the experiments, variables and

their associated roles constitute the source of much

confusion that most novices have when attempting

to form mental models.

THE CODE

Registres MOV exa, 4 MOV exb, 4 ADD exa, exb exc

MOV exa, 4; exa 4 exa 4 exa 4 exa

MOV exb, 7; exb exb 7 exb 7 exb

ADD exa, exb, exc exc exc exc 11 exc

exd exd exd exd

exe exe exe exe

Visual interpretation of the code using Registre Tranfer Language (RTL)

mailto:jicts@udsm.ac.tz

 JICTS

Mselle Volume 3(2) Pages 1-23

19 2025 jicts.udsm.ac.tz

int x;

int y;

int z;

x=4;

y=7;

z=x+y;

Figure 13. A high-level version of the code in Figure

12.

Figure 14. MTL visualization of the code segment.

Some authors conclude that PVs, if massively

applied in classrooms, can reduce the HCL and

positively impact learning and teaching

programming [5, 12-16]. As argued in this paper,

the use of PVs, such as MTL, combined with low-

level syntax and high-level language codes, is part

of the solution. Numerous PV proponents for

learning and teaching programming have reported

positive results [16, 18]. Nevertheless, encouraging

as these results may be, the language-trap is one

reason the use of PVs and mental models has not

consolidated itself in mainstream teaching and

learning programming. A PV diagram is just a

means and not an end in itself. An effective PV

scheme must be simple both in vocabulary and

syntax, as demonstrated throughout this study. It

does not require elegance. In fact, if PVs are

effectively used in the opening of the topics, their

use for complex aspects, such as functions and file

handling, may not be necessary.

Program visualization (PV) and its relative

success in assisting comprehension in

programming

The PV approach in programming is as old as

programming itself. The oldest and among the

widely used PV is the flowchart. Together with

reducing CL, flowcharts were meant to aid

communication between the analyst and the

programmer. Flowcharts were introduced to

teaching and learning programming at the same

time as high-level languages were introduced. As a

result, the use of flowcharts in programming was

influenced by the language-trap. Flowcharts, by

their nature, are more useful at conveying language

features than concrete mental models [9]. As

argued by Esmenger [2], flowcharts have been

ineffective both in the reduction of CL and in

professional programming. On the contrary,

modern PV schemes, such as Celiot, Jeliot 3, Plan

Ani, and MTL, have been reported to reduce CL

and, by implication, the failure rates [17, 22].

Mtaho and Mselle [18] and Saha et al. [25]

argued that the adoption of PVs and mental models

in programming has had limited success due to their

failure to allow for students' engagement and the

time required to incorporate them into instruction.

However, as demonstrated in this paper, the tacit or

covert influence of high-level syntax in

programming (language-trap) remains dominant in

most PV applications, rendering them ineffective as

means for building mental models.

Mselle and Ishengoma [16] reported that

students who found programming challenging but

manageable were the most positive about using

visualizations, while the strongest and weakest

students were less impressed. In fact, any student

who is using PV as a means to validate mental

models will be positive about the use of PV. Any

student who perceives programming as a study of a

language will find PVs to be an added burden and,

therefore, a waste of time. The same findings were

reported by Pelánek and Effenberger [18] and Sun

and Zhou [23], who showed that the most

successful novices were those who preferred to

THE CODE

RAM int x, y, z; int x, y, z; z=x+y;

int x; RESERVED x 4 x 4 x

int y; RESERVED y 7 y 7 y

int z; RESERVED z RESERVED z 11 z

x=4;

y=7;

z=x+y;

Visual interpretation of the code using Memory Tranfer Language (MTL)

mailto:jicts@udsm.ac.tz

 JICTS

Mselle Volume 3(2) Pages 1-23

20 2025 jicts.udsm.ac.tz

visualize their codes, while those who preferred

alternative means had unviable mental models.

This conforms with the results from this study and

the correlation between the desire to use

visualization and success in forming viable mental

models.

Using results from this study, it is suggested to

incorporate a mandatory use of PVs and mental

models in the instructional design for introductory

programming. Since mental models are pivotal in

introductory programming, it is important to allow

a novice to advance to a subsequent stage only after

first proving that he or she has acquired appropriate

mental models in each prior stage. Once

appropriate mental models have been depicted at

each stage with the assistance of low-level code

combined with MTL PVs, the same can be used as

a means to assist a novice in the process of learning

other concepts, such as data types and other

language features.

As demonstrated in this study, novices can be

introduced to the unfamiliar aspect of variable

overwriting, first by de-learning "co-existence" in

the computer register and later in RAM through

PVs and mental models (Figures 4-6). Similarly,

left-to-right evaluation is familiar to learners due to

their experience in mathematics. To de-learn this

and adopt right-to-left evaluation requires a lot of

time and extensive use of PVs. It is hard to find an

instructional design that takes these details

seriously. Issues such as the de-learning of co-

existence, incrementing, and the right-to-left

operation property of the = operator must be given

more emphasis in the beginning than they are

currently done, where coverage of the language

syntax instead of mental models seems to be the

main concern.

7. Conclusion and Recommendations

Introductory programming is a subject with

unusual HCL [1, 10, 12]. The subject requires

mastery of mental models and language features

both of which carry HCL [22, 23]. From documents

evaluation in this research, it was revealed that

instruction effort and research on how to reduce

HCL in programming has been disproportionally

concentrated on language features and less so on

mental models.

Although the PV approach, which emphasizes

both mental models and language features has been

advocated for over five decades now [13, 14, 15-

20], this approach has yet to receive wide

acceptance among programming instructors. This

research has shown that the language-trap in

programming instructional design is responsible for

the low uptake of PVs in instructional design

among programming instructors. The language-

trap has a self-reinforcing effect in books, teaching

notes, examinations and even research on how to

reduce HCL in introductory programming.

In this research, using DSRM, a novel approach

based on PV in combination with MTL and low-

level syntax and high-level syntax, was designed,

implemented, and tested. Results from the first

experiment show that students who were instructed

using the MTL-PV three-tier approach were more

successful in showing the exact mental models for

the selection question than was the case for students

who were taught in the traditional approach.

Furthermore, results from the second experiment

showed that students who were taught using the

MTL-PV three-tier approach were less likely to

commit the common programming errors (Table 2).

According to some authors [7, 12, 20, 26], by

strategizing on an instructional approach that

combines both audio and visual channels, the CL is

reduced. As demonstrated in this study, the use of

low-level syntax in combination with MTL PV at

the initial stage of a program was made possible and

less demanding cognitively.

mailto:jicts@udsm.ac.tz

 JICTS

Mselle Volume 3(2) Pages 1-23

21 2025 jicts.udsm.ac.tz

This study has shown that using a limited

assembly syntax in combination with MTL PV to

emphasize mental models right at the beginning of

the course is more effective than exclusively

relying on high-level languages.

Worldwide, governments and educational

institutions are taking measures to introduce

programming at lower educational levels. This

implies that more students will be required to study

the subject. Results from this study may be useful

to instructional designers. Before making a

decision, a few questions are worth asking: how

much effort should be directed towards mental

models? Is it worth for an instructor to continue

teaching higher-level topics, such as selection and

loops, before ensuring that novices have correct

mental models concerning the concept of variables,

data inputting, processing, storage, and retrieval?

This study was carried out in one country using

two groups of students admitted to just two

universities. For generalization, studies of this type

must normally be carried out across different

countries. Despite this limitation, there is a reason

to do more experiments on the viability of partially

using low-level programming in combination with

PVs and animations at the beginning of

programming for the purpose of building viable

mental models and later transitioning to high-level

syntax without abandoning PV.

This study does not advocate the replacement of

high-level languages with assembly code or mental

models in introductory programming. As shown in

all worked examples, high-level languages remain

at the core of learning and teaching programming.

This article calls upon the programming

community, instructors, curricula developers, book

writers, students, and researchers to embrace

mental models and liberate themselves from the

language-trap by exploring the possibility of a

partial return to low-level languages combined with

memory PVs along with high-level languages for

programming instructional design.

It has to be pointed out that C++ is used just as

one of the high-level programming languages.

Examples in any other high-level language, such as

C, Java and C#, would neither change the

implementation of the MTL three-tier approach nor

the findings of this research.

CONTRIBUTIONS OF CO-AUTHORS

Leonard Mselle ORCID: 0000-0001-6326-6437 Conceived the idea, conducted experiments, and

wrote the paper

mailto:jicts@udsm.ac.tz
https://orcid.org/0000-0001-6326-6437

 JICTS

Mselle Volume 3(2) Pages 1-23

22 2025 jicts.udsm.ac.tz

REFERENCES

[1] G. Ashman, S. Kalyuga and J. Sweller, Problem-solving or explicit instruction: Which should go first

when element interactivity is high? Educational Psychology Review, 32(1), p. 229–247, 2022. [Online].

Available: https://doi.org/10. 1007/s10648-019-09500-5.

[2] N. Esmenger, Multiple meanings of a flowchart. Information & Culture: A Journal of History. 3(51),

2016.

[3] S. Fincher et al. Notional Machines in Computing Education: The Education of Attention, ITiCSE-WGR

’20, June 17–18, 2020. Trondheim, Norway.

[4] S. Garces et al. Engaging students in active exploration of programming worked examples. Education

and Information Technologies, 8(3), 2022.

[5] D. Morais da Silva et al. Ada Lovelace’s Legacy for Computation History. Science, Technology &

Public Policy. 3(2), p. 8-13. 2019, doi: 10.11648/j.stpp.20190302.11.

[6] R. Bornat, S. Dehnadi, and Simon, Mental Models, Consistency and Programming Aptitude. ACE '08:

Proceedings of the tenth conference on Australasian computing education, 78, 2008.

[7] S. Cammeraat, G. Rop and B. B. de Koning, The influence of spatial distance and signaling on the split-

attention effect. Computers in Human Behavior, 105(106203), 2020. [Online]. Available:

https://doi.org/10.1016/j.chb.2019.106203.

[8] J. C. Castro-Alonso, P. Ayres and J. Sweller, Instructional visualizations, cognitive load theory, and

visuospatial processing. In J. C. Castro-Alonso (Ed.), Visuospatial processing for education in health and

natural sciences, Springer, pp. 111–143, 2019. [Online]. Available: https://doi.org/10.1007/978-3-030-

20969-8_5.

[9] J. Sorva, V. Karavirta and L. Malmi, A review of generic program visualization systems for introductory

programming education. ACM Trans. Comput. Educ. 13(4), 2013. [Online]. Available:

http://dx.doi.org/10.1145/2490822.

[10] A. Korbach et al. Should learners use their hands for learning? Results from an eye-tracking study.

Journal of Computer Assisted Learning, 36(1), 2020. [Online]. Available: https://doi.org/10.

1111/jcal.12396.

[11] A. Robins, Learning edge momentum: a new account of outcomes in CS1, Computer Science

Education, Taylor and Francis, 2010.

[12] V. Dentamaro et al. Human activity recognition with smartphone-integrated sensors: A survey. Expert

Systems with Applications, p. 123–143, 2024.

 [13] P. E. Dickson, N. C. Brown and B. A. Becker, Engage Against the Machine: Rise of the Notional

Machines as Effective Pedagogical Devices, ITiCSE ’20, June p. 15–19, 2020, Trondheim, Norway.

[14] J. C. Castro-Alonso et al. Five Strategies for Optimizing Instructional Materials: Instructor- and

Learner-Managed Cognitive Load. Educational Psychology Review, 33(1) 2021. [Online]. Available:

https://doi.org/10.1007/s10648-021-09606-9.

mailto:jicts@udsm.ac.tz
https://doi.org/10.1007/978-3-030-20969-8_5
https://doi.org/10.1007/978-3-030-20969-8_5
https://doi.org/10.%201111/jcal.12396
https://doi.org/10.%201111/jcal.12396
https://doi.org/10.1007/s10648-021-09606-9

 JICTS

Mselle Volume 3(2) Pages 1-23

23 2025 jicts.udsm.ac.tz

[15] M. Masoud and L. Mselle, Using Spiral Approach in teaching programming to Novices to improve

problem composition and algorithmatization, The 3rd International Virtual Conference on Advanced

Scientific Results, p. 25– 29, 2015. [Online]. Available: www.scieconf.com

[16] L. Mselle and F. Ishengoma, Memory Transfer Language as a Tool for Visualization-Based-Pedagogy.

Education and Information Technologies, Springer Nature, 27(9), 2022.

[17] A. B. Mtaho and L. Mselle, Difficulties in Learning Data Structures Course: Literature Review Journal

of Informatics, 4(1), p. 26-55, 2024, [Online]. Available: https://doi.org/10.59645/tji.v4i1.136.

[18] R. Pelánek and T. Effenberger, The Landscape of Computational Thinking Problems for Practice and

Assessment. ACM Transactions on Computing Education 23(2), 2023.

[19] S. Phlix, How can self-learners learn programming in the most efficient way? A pragmatic approach.

Submitted in partial fulfillment of the requirements for the degree of Master of Science in Management /

Grande Ecole Diploma at HEC Paris. Business Studies, University of Mannheim, 2016.

[20] E. F. King, Bit by Bit: A Graphic Introduction to Computer Science, Edition Stanford University Press,

NY, 2024.

[21] R. Kraleva, V. Kralev and D. Kostadinova, Investigating some programming languages for children

to 8 years. International Scientific and Practical Conference “WORLD SCIENCE” South-West University

“Neofit Rilski” Bulgaria, Blagoevgrad, 2016.

[22] N. Sundararajan and O. Adesope, Keep it coherent: A meta-analysis of the seductive details effect.

Educational Psychology Review, 32(3), 2020, [Online]. Available: https://doi.org/10.1007/s10648-020-

09522-4.

[23] L. Sun and L. Zhou, Does text-based programming improve K-12 students’ CT skills? Evidence from

a meta-analysis and synthesis of qualitative data in educational contexts. Thinking Skills and Creativity,

49(1), 2013.

[24] W. Leahy and J. Sweller, The centrality of element interactivity to cognitive load theory. In S.

TindallFord, S. Agostinho, & J. Sweller (Eds.), Advances in cognitive load theory: Rethinking teaching.

Routledge. p. 221– 232, 2020. [Online]. Available: https://doi.org/10.4324/9780429283895-18.

[25] A. Saha et al. A survey of machine learning and meta-heuristics approaches for sensor-based human

activity recognition systems. Journal of Ambient Intelligence and Humanized Computing 15(1) p. 29–56,

2024.

[26] T. van Gog, V. Hoogerheide and M. van Harsel, The role of mental effort in fostering self-regulated

learning with problem-solving tasks. Educational Psychology Review, p. 1055–1072, 32(4), 2020. [Online].

Available: https://doi.org/10. 1007/s10648-020-09544-y

mailto:jicts@udsm.ac.tz
http://www.scieconf.com/
https://doi.org/10.1007/s10648-020-09522-4
https://doi.org/10.1007/s10648-020-09522-4
https://doi.org/10.4324/9780429283895-18

