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Abstract 

Electric vehicles (EVs) present a viable solution for reducing 

carbon emissions, environmental pollution, and the effects of 

climate change. The EV utilizes energy stored in its battery banks, 

which are charged by electric vehicle charging systems (EVCS), 

primarily integrated with the power grid. However, integrating 

EVCS into grid poses significant challenges, including increased 

power losses, voltage deviations, harmonic injection, and grid 

instability. This study examines the impacts of connecting EVCS to 

Tanzania's electrical distribution networks and proposes an 

optimization approach using metaheuristic algorithms to mitigate 

power loss and voltage deviation challenges. The study reveals that 

adding one EVCS raises power loss from 13.0357 kW to 17.1963 

kW, while voltage deviation increases from 0.47 V to 0.63 V, with 

further deterioration in system performance as more EVCS units are 

introduced. An enhanced Symbiotic Organism Search algorithm 

was employed to determine the optimal allocation and size of EVCS 

and PV systems. The results show that integrating 1 PV in the power 

system with 3 EVCSs reduced power loss to 5.26 kW from 61.42 

kW. This research reveals the effectiveness of optimal PV system 

placement in improving the stability of the electrical network and 

the feasibility of an efficient EV penetration in Tanzania.  
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1. Introduction 

Electric vehicle (EV) technology was invented 

at the beginning of the 20th century, competing 

with internal combustion engines (ICEs) in the 

automotive and transportation industries [1]. The 

EV uses electrical energy stored in the batteries. 

Due to the limitations of electricity access and the 

high cost of battery technologies, the ICE has 

outperformed EVs and emerged as a popular 

technology for many years [2]. However, the ICE 

relies on the combustion of fossil fuels, which 

fosters carbon emissions, environmental pollution, 

and climate change. The push for carbon-free 

technologies, environmental conservation, and the 

development of electricity and battery technologies 

at the beginning of the 21st century led to a shift in 

the automobile and transportation industry towards 

electric vehicle (EV) technologies [3, 4].  

Electric vehicles utilize electricity as a primary 

energy source, which is considered cleaner than 

energy from fossil combustion. The EV utilizes 

energy stored in the battery banks, which are 

primarily charged by electricity from the main grids 

or isolated renewable energy sources [1]. However, 

due to the large power demand posed by EVs, they 

are typically charged by the main grid in most 

cases. In peak demand, the vehicles can feed stored 

energy back into the main grid. The technique 

behind power exchange between a vehicle and the 

electrical grid is called vehicle-to-grid (V2G) 

technology[5]. 

The applications of V2G and EV technologies 

are rapidly advancing across developed and 

developing countries. Approximately 14 million 

cars were sold worldwide in 2023, with 95% of 

these sales occurring in China, Europe, and the 

United States. The trends show the rapid growth of 

the electric car market worldwide. Electric vehicles 

represented about 2% of total car sales in 2018, 

rising to 14% in 2022 and reaching 18% in 2023[6]. 

Although electric vehicles are experiencing rapid 

growth worldwide, their adoption in Africa remains 

limited. The major obstructions to the adoption of 

EVs in developing countries include high initial 

costs, the absence of clear policies and regulations, 

poor electricity networks, and the scarcity of public 

e-charging stations [7]. The study done by Malima 

and Moyo [8] analyzed the total Cost of Ownership 

(TCO) of EVs in sub-Saharan Africa to determine 

if they are viable options for consumers from 

Tanzania. The results showed that the average 

initial cost is more than US Dollars 40000, which 

makes it one of the reasons for the low adoption of 

EV vehicles in developing countries. 

The number of vehicles in Tanzania has 

increased rapidly, with two-wheel (2W) vehicles, 

such as piki piki, and three-wheel (3W) vehicles, 

including Bajaji and Gutas, surpassing four-wheel 

(4W) vehicles. The adoption of electric vehicles in 

Tanzania is mostly practiced in 2W and 3W 

vehicles. At least four or five companies in 

Tanzania provide electric motorcycles, including 

eMo Bodaboda, Greenfoot, Sinoray, and Linkall 

[9]. For the 4W electric vehicles, Hanspaul Ltd and 

its sister company, E-motion, have ventured into 

assembling open-top safari vehicles for tourists. 

Many companies and institutions have recently 

ventured into studying and manufacturing electric 

vehicles in Tanzania, although the projects are still 

in the pilot stage. For example, Kaypee Motors and 

the University of Dar es Salaam piloted small 

electric flat-bed trucks in Dar es Salaam [10].   

The adoption of electric vehicles in Tanzania 

has increased rapidly over the past few years, 

driven by declining costs and growing consumer 

awareness of electric vehicles. However, the 

industry is still relatively young and hindered by 

several factors, including high import taxes, unclear 

government policy, limited funding, a shortage of 

EV experts, and limited consumer awareness [9]. 

Importing vehicles in Tanzania requires processing 
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through the Tanzania Revenue Authority. 

However, the process was initially made for ICE 

vehicles and required a CC engine size, which does 

not exist on electric vehicles [10]. Additionally, 

Tanzania has not yet established the necessary 

infrastructure, particularly a power system, to 

support electric vehicles. For example, with 

existing electric vehicles, charging is done through 

the household electrical facilities, which not only 

takes a long time to charge the vehicles but also 

may cause detrimental effects to the power system 

[11]. Integrating electric vehicle charging stations 

(EVCS) in the power system will ensure fast 

charging and power system safety. Therefore, this 

study investigates the effects of integrating EVCS 

into Tanzania's electrical distribution networks.  

The electric vehicle charging stations (EVCS) 

were designed to speed up the charging time of 

EVs. Such fast-charging stations draw high 

currents from electrical systems, which may cause 

adverse effects on the operating parameters of 

electrical systems, such as increased peak load 

demand, voltage instability, voltage deviations, 

power losses, and reliability problems  [12]. Most 

power losses in power systems occur in distribution 

networks where the charging stations are expected 

to be installed, leading to poor service quality, 

higher electricity costs, and utility revenue 

losses[13]. Distributed generators (DG) are among 

the tools for alleviating the problems caused by 

EVCS integration into the power systems. 

However, the DG placement in the power system is 

challenging. Therefore, the efficient integration of 

EVCS involves optimal placement of EVCSs and 

DGs, making it an NP-hard optimization problem. 

Optimal placement of EVCS and DG involves 

finding their location and sizes that maintain the 

healthy condition of the electrical system [11]. 

Metaheuristic algorithms are among the methods 

for solving such optimization problems because 

they can find near-optimal solutions for large and 

complex problems. Also, metaheuristic algorithms 

operate by repeated evaluation of objective 

functions and are particularly useful for problems 

where traditional optimization techniques struggle, 

such as non-linear, multi-modal, and non-convex 

problems [14].  

The symbiotic organism search (SOS) 

metaheuristic algorithm has been employed to 

determine the optimal locations and sizes of EVCSs 

and PVs. The objective functions focused on 

minimizing power losses and voltage deviation. 

The SOS was modified by using penalty 

mechanisms in order to ensure the simultaneous 

placement of multiple EVCSs. Different 

parameters were considered, including the number 

of EVCSs and the number of PVs, with three 

placement cases examined. The findings indicate 

that incorporating photovoltaic (PV) systems 

significantly enhances the performance and 

stability of the power system by reducing power 

losses and voltage deviations, with greater benefits 

observed as the number and capacity of PV systems 

increase. 

2. Literature Review 

2.1 Metaheuristic algorithms overview 

Metaheuristic algorithms are efficient 

computation methods for solving complex 

optimization problems, especially when traditional 

methods are impractical [15]. Metaheuristic 

algorithms have been applied in various fields, 

including engineering design, machine learning, 

electrical power systems, and logistics. In power 

systems, metaheuristic algorithms have been 

employed for various purposes, including solving 

economic dispatch problems, determining optimal 

DG placements, and optimizing load flow [16]. In 

solving the DG and EVCS placement problems in 

the power system, several metaheuristic algorithms 

have been reported. 

Algorithm 1 represents basic structure of the 

SOS metaheuristic algorithm.  
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Algorithm 1: The Basic Structure of SOS [17] 

Initialization 

while t<maxite do 

 Identify the best algorithm Xbest in an 

ecosystem 

 for i=1: ecosystemssize do 

  Mutualism 

  Commensalism 

  Parasitism 

 end for 

 Checking termination criteria 

end while  

2.2 Related works 

Studies show that the optimal allocation of 

EVCS, including distributed generators such as 

solar photovoltaics (PV), wind energy, battery 

energy storage systems (BESS), and distribution 

static compensators (DSTATCOM), improves the 

power system’s operational parameters. The EVCS 

in the electrical distribution network is the NP-hard 

optimization problem which employs metaheuristic 

algorithms, such as Teaching Learning 

optimization (TLBO), African vulture optimization 

algorithm (AVOA), Grasshopper optimization 

algorithm (GOA), Hybrid AVO and pattern search 

(HAVOPS), transient search optimization 

algorithm (TSOA), Whale optimization technique 

(WOT), non-dominated sorting genetic algorithm II 

(NSGA-II) and Hunter Prey Optimization (HPO) 

algorithm [18, 19]. Reinforcement Learning (RL) 

based algorithms have also been applied. Table 1 

presents studies on the allocation of EVCS, along 

with their optimization methods and the associated 

electrical networks.

Table 1. Approaches for allocation of EVCS in the electrical networks using metaheuristic algorithms. 

References Optimization 

method 

Objective functions Electrical distribution 

network 

Energy sources 

generators 

[20] TLBO Power loss and Voltage 

profile 

IEEE 33 and 69 bus 

systems 

EVCS, PV and Wind 

energy 

[21] RL power loss, voltage 

stability, installation and 

operation costs. 

IEEE 33 and 118-bus 

distribution network 

BESS units (EVCS) 

and PV 

[22] AVOA Real power loss index 

and voltage stability 

index. 

The 33 bus, 69 bus, and 

136 bus systems. 

EVCSs, DGs, and 

DSTATCOMs. 

[23] GOA Power loss and Voltage 

profile 

The 51-bus and 69-bus 

distribution networks 

EVCSs, DGs, and  

shunt capacitors  

[24] HAVOPS 

 

Voltage deviation, real 

power loss, and 

investment costs 

33-bus and 136-bus 

systems  

EVCS, network 

Reconfiguration, DG, 

DSTATCOM 

[25] TSOA power loss, voltage 

profile and stability 

index 

IEEE-25 unbalanced 

radial distribution system 

EVCS and DGs  

[26]  WOT active and reactive 

power losses 

IEEE-33 and 69-bus EVCSs, DGs, and  

shunt capacitors 

[19]  NSGA-II voltage levels and power 

losses 

IEEE 34-node test feeder EVCSs and distributed 

energy resources 

(DERs) 

[18] HPO Power loss and Voltage 

profile 

IEEE-33 and 69-bus EVCSs, PVs, and 

DSTATCOMs. 
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As presented in Table 1, most studies for the 

allocation of EVCS involve standard IEEE bus 

systems, which are the primary distribution 

networks and are based on theoretical assumptions. 

Therefore, this study proposes techniques for 

allocating EVCS in the secondary distribution 

networks. Unlike other studies, which focused on 

theoretical IEEE bus systems, this study involves 

practical electrical distribution networks from 

Tanzania’s national electrical supply company 

(TANESCO), leveraging the use of advanced 

technologies, including resilient communications 

architectures [27, 28] and distributed fog 

computing [29]. Also, in the study by Pappu et al. 

[18] the number of vehicles per EVCS was fixed. 

This study considered optimizing the number of 

vehicles per charging station, which increases the 

complexity of the problem.  

The symbiotic organism search algorithm, first 

reported by Cheng and Prayogo [30], is among the 

popular algorithms for solving DG placement 

issues due to its simple structure and easy 

implementation procedures. Since its introduction, 

numerous variants of SOS have been proposed to 

address various problems in diverse areas. The SOS 

was designed based on the association of organisms 

in the ecosystem. The SOS involves three main 

stages: mutualism, commensalism, and parasitism, 

as presented in the pseudo-code in Algorithm 1.  

3. Methods  

3.1 Tanzania power system 

Tanzania Electric Supply Company Limited 

(TANESCO) is the main utility company 

responsible for generating, transmitting, and 

supplying electricity in Tanzania [31, 32]. As per 

the report of 2021/2022, the TANESCO 

distribution network comprises approximately 

148,544 km of distribution lines, which includes 

8,325 km of 33kV lines, 3,732 km of 11kV lines, 

and 12,992 km of lower voltage lines [33, 34]. The 

electrical distribution network is essential since it 

interconnects the transmission system and the users 

[35]. The distribution system consists of the most 

extensive coverage, scattered, and most households 

are in un-surveyed areas, which makes it complex 

for analysis [36]. The current EV charging trends in 

Tanzania, which utilize household facilities, may 

interfere with power system planning, potentially 

reducing power system performance or causing 

significant issues.  

In studying the integration of electric vehicles 

into Tanzania’s power system, the study area was 

selected from a part of the Tanzanian electrical 

distribution network presented in Figure 1. The area 

was selected from the Kinondoni North Area near 

Msasani Peninsula Hospital. The selected area has 

79 nodes with 143 customers. Currently, there is no 

EVCS in this study area. 

 

Figure 1. Electrical network of the study area [13]. 

3.2 Modelling of electric vehicle charging 

station 

In V2G technology, the EVCS consists of 

components such as load management systems, 

charging stations, and electric grids. The load 

management system is crucial for power 

distribution and protection against overloading. 

The charging stations regulate the power exchange 

with the grid, ensuring safety and compatibility 

with the battery. The impact of EVCS on the 
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operation of the electric grid is more significant 

when charging the battery. When charging, the 

EVCS absorbs real power from the grid. The active 

power expression of the EVCS can be given in 

equation (1) [18, 37]. 

 
𝑃𝐸𝑉 =

𝑉𝑠  × 𝑉𝑐 ×𝑠𝑖𝑛 𝑠𝑖𝑛 𝛽 

𝜔𝐿𝐶
, (1) 

where 𝑃𝐸𝑉 is the denotation of the real power of the 

EV, 𝑉𝑠 is the grid supply voltage, 𝑉𝑐 is the voltage 

of the charging station, β is the angle between 𝑉𝑠  

and 𝑉𝑐, 𝜔 is the angular frequency of the grid, 

and 𝐿𝐶  is the total inductance contributing to the 

active loads, including the line inductance and the 

charger filter inductance between the charger and 

the grid. 

The EVCS is connected to the electrical 

system's bus. In electrical power systems, active 

loads consume power that performs useful work 

(like heating or lighting), while reactive loads store 

and release energy but do not directly contribute to 

work [38]. Since it draws power from the grid, the 

active load, which refers to the load that consumes 

power for useful work, is connected to the bus and 

can be given as 

 𝑃𝑖(𝑛𝑒𝑤) = 𝑃𝑖(𝑏𝑎𝑠𝑒) + 𝑃𝑖(𝐸𝑉), (2) 

where 𝑃𝑖(𝑏𝑎𝑠𝑒) is the active load of the system at the 

𝑖𝑡ℎ bus before the EVCS is connected, 𝑃𝑖(𝐸𝑉) is the 

power drawn by the EVCS from the grid at the 𝑖𝑡ℎ 

bus and 𝑃𝑖(𝑛𝑒𝑤) is the total load at the 𝑖𝑡ℎ bus. 

3.3 Modelling of Solar Photovoltaic System 

Modelling 

A solar photovoltaic (PV) system converts 

sunlight into electricity using semiconductor 

materials. Solar PV systems comprise solar panels, 

an inverter (which converts DC to AC power), and 

storage batteries to store surplus energy for later 

use, thereby addressing intermittency issues 

associated with solar energy [39]. Figure 2 presents 

a schematic diagram of the grid-connected solar PV 

with Solar panels, controller, inverters, and grid 

supply. The system can be connected to the grid or 

operated independently (off-grid) for residential, 

commercial, and utility-scale applications [40].  

 

Figure 2. Schematic diagram of grid-connected solar 

PV [40]. 

A mathematical model of output power from a 

PV system involves an equation 

 
𝑃𝑃𝑉 = 𝑃𝑃𝑉(𝑏𝑎𝑠𝑒)[1 + 𝛼𝑃𝑉(𝑇 − 𝑇𝑟𝑒𝑓)]

𝛿𝑃𝑉

100
 (3) 

representing the relationships between active 

power, solar irradiance, and temperature [18, 37]. 

The variables from (3) are defined as follows: 

𝛼𝑃𝑉 represents the temperature-conversion 

coefficient of PV; 𝑇𝑟𝑒𝑓 represents a set reference 

temperature value; 𝑇 and  𝛿𝑃𝑉 represent the 

temperature and solar irradiance at the recording 

time instant, respectively; 𝑃𝑃𝑉 and 𝑃𝑃𝑉(𝑏𝑎𝑠𝑒) 

represent the output power of the PV system at the 

recording time instant and the rated power of the 

PV cell, respectively. 

In grid-connected mode, the PV system is 

connected to the bus. Since it injects the power into 

the grid, the active load connected to the  𝑖𝑡ℎ bus 

can be given as 

 𝑃𝑖(𝑛𝑒𝑤) = 𝑃𝑖(𝑏𝑎𝑠𝑒) + 𝑃𝑖(𝑃𝑉), (3) 

where 𝑃𝑏𝑎𝑠𝑒 is the active load of the system at 

the 𝑖𝑡ℎ bus before the PV is connected, 𝑃𝑖(𝑃𝑉) 
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represents the power injected by the PV into the 

grid at the 𝑖𝑡ℎ bus and 𝑃𝑖(𝑛𝑒𝑤) is the total load at the 

𝑖𝑡ℎ bus. 

3.4 Objective function 

In low-voltage radial electric distribution 

networks, the active power loss is more influential 

than the reactive power loss [41]. Therefore, in this 

study, the objective functions are active power loss 

and voltage deviations, as presented in equations 

(5) and (6). The optimization method aims to 

minimize power loss, as presented in (7). The 

voltage deviation in (6) will be analyzed from 

optimized voltage values. 

 

𝑃𝑙𝑜𝑠𝑠 = ∑ 𝐼𝑖
2 ×  𝑅𝑖

𝑛𝑏

𝑖=1

 (5) 

 

𝑉𝑑 = ∑(𝑉𝑖 − 𝑉𝑟𝑎𝑡𝑒𝑑)2

𝑛𝑏

𝑖=1

 (6) 

 𝐹𝑜𝑏𝑗 = minimize(𝑃𝑙𝑜𝑠𝑠) (7) 

where 𝐹𝑜𝑏𝑗 is the objective function, 𝑃𝑙𝑜𝑠𝑠 is the 

total power loss, 𝐼𝑖 is the current through the branch 

𝑖, 𝑛𝑏 is the number of buses. 𝑉𝑑 is the overall 

network voltage deviation. The 𝑅𝑖 is the resistance 

of the 𝑖𝑡ℎ network branch connected between 𝑖𝑡ℎ 

and (𝑖 + 1)𝑡ℎ  bus. The 𝑉𝑖 is the voltage magnitude 

of the 𝑖𝑡ℎ bus, expressed in p.u and 𝑉𝑟𝑎𝑡𝑒𝑑 is the 

rated voltage of the network, which is 1 p.u.  

In the power system, changing the load or 

generator size at any bus causes changes in branch 

currents and bus voltages, which eventually cause 

changes in power losses, voltage deviations, and 

other power system performance parameters. 

Therefore, this study aims to determine the optimal 

size and number of EVCS and PV that minimize the 

objective function in (7).  

3.5 Constraints 

When operating DGs, the objective function is 

subjected to several constraints.  

A. Power balance constraints 

 𝑃𝑃𝑉 = 𝑃𝑙𝑜𝑠𝑠 + 𝑃𝐷 (8) 

 𝑄𝑃𝑉 = 𝑄𝑙𝑜𝑠𝑠 + 𝑄𝐷 (9) 

where 𝑃𝑃𝑉 and 𝑄𝑃𝑉 in (8) are the total active and 

reactive power injected by the PVs, respectively.  

𝑃𝐷 and 𝑄𝐷 are the active and reactive power of the 

load at the 𝑖𝑡ℎ bus, respectively. 𝑃𝑙𝑜𝑠𝑠 is the total 

active power loss of the network given in equation 

(5), and 𝑄𝑙𝑜𝑠𝑠 in  (9) is the total reactive power loss 

of the network given by equation (10). 

 

𝑄𝑙𝑜𝑠𝑠 = ∑(𝐼𝑖)
2𝑋𝑖

𝑁

𝑖=1

 (10) 

where 𝐼𝑖 is the current through the branch 𝑖 and 𝑋𝑖 

is the reactance of the branch 𝑖, and 𝑁 is the total 

number of branches in the network. 

B. Voltage constraints 

𝑉𝑚𝑖𝑛 < 𝑉𝑖 < 𝑉𝑚𝑎𝑥 where 𝑖 = 1,2,3, … , 𝑛  (11) 

where 𝑉𝑖 is the voltage magnitude at 𝑖𝑡ℎ bus. The 

 𝑉𝑚𝑎𝑥 is the upper voltage limit, and 𝑉𝑚𝑖𝑛 is lower 

voltage limit. In this work, the minimum and 

maximum voltage limits are 0.9 p.u and 1.1 p.u, 

respectively. The values of voltage limits are 

according to the Tanzania electrical power system 

grid code, which specifies a 10% tolerance for low-

voltage networks [42]. 

C. Photovoltaic power constraints 

𝑃𝑖,𝑚𝑖𝑛
𝑃𝑉 < 𝑃𝑖

𝑃𝑉 < 𝑃𝑖,𝑚𝑎𝑥
𝑃𝑉              (12) 

where 𝑃𝑖,𝑚𝑖𝑛
𝑃𝑉  is the lower active power limit of PV,  

𝑃𝑖,𝑚𝑎𝑥
𝑃𝑉  is the upper active power limit of PV. 𝑃𝑖

𝑃𝑉 is 

the active power of the PVs at 𝑖𝑡ℎbus, respectively.  
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3.6 The Proposed metaheuristic algorithm for 

EVCS and PV placements  

In this study, the placement of EVCS was 

implemented using the symbiotic organism search 

algorithm. Installing Electric Vehicle Charging 

Stations (EVCS) adds to the power system load and 

increases power losses in electrical distribution 

networks. For power loss minimization problems 

and simultaneous placement of multiple EVCS, it 

is possible for multiple EVCS to be placed at the 

same locations. Since the simultaneous placement 

of multiple EVCSs aims to place each EVCS at 

different locations, optimizing their placement 

using metaheuristic algorithms becomes 

challenging. To enable the efficient simultaneous 

placement of EVCS, modifications were made to 

the metaheuristic algorithm by incorporating 

penalty mechanisms. With the penalty mechanism, 

the solution with repeated bus locations is 

penalized by adjusting its objective function value 

to the highest value in the population. Thus, 

preventing these solutions from consideration in 

subsequent algorithm iterations, since in 

minimization problems using metaheuristic 

algorithms, solutions with high objective function 

values have greater chances of being discarded. The 

flowchart of the proposed penalty mechanisms is 

presented in Figure 3. 

Solution (Location)

Yes

Has repeated 

Locations?

Find maximum 

fitness value

Assign maximum fitness 

value to current solution

Proceed to other Stage

NO

 

Figure 3. Penalty mechanisms for metaheuristic 

algorithm. 

At each stage of the SOS algorithm, the 

organism is evaluated to determine the value of the 

objective function for a specific solution. The 

function evaluation is performed in each iteration 

for each organism in the ecosystem to determine the 

associated power loss. Since this study involves the 

placement of EVCS and PV, the evaluation steps 

are presented in Figure 4, which are explained as 

follows:  

(i) Place the EVCS: This stage involves the 

placement of EVCS in the electrical bus 

locations as the solution proposed by the 

organism.  

(ii) Place PV: This stage involves placing PV in 

the specific buses as proposed by the 

organism. This case is applied when the 

simultaneous placement of EVCS and PV is 

performed. 

(iii) Run power flow: This stage involves 

running the power flow algorithm, which 

determines the current in each branch and 

the voltage in each node. This study applied 

the direct load flow method [31].   

(iv) Calculate power loss and voltage deviation: 

The results from the power flow method are 

used to calculate the power loss and voltage 

deviation using (5) and (6).  

Place EVCS [1]

Place PV [2]

Start

End

Run power flow [3]

Calculate power loss and 

voltage deviation [4]

 

Figure 4. Objective function evaluation steps. 
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Based on the original SOS proposed by Chen 

and Prayogo [30], the penalty mechanism presented 

in Figure 3, and the objective functions evaluation 

steps presented in Figure 4, the proposed SOS 

variant based on penalty mechanisms for the 

placement of EVCS and PV in the electrical 

distribution networks is presented in Figure 5. In 

each stage of SOS, when updating the states of 

organisms, the penalty mechanism is applied to 

discard placements of multiple EVCS in the same 

location. Cheng and Prayogo [30] present the 

mathematical formulation of stages of the SOS 

algorithm, such as mutualism, commensalism, and 

parasitism. 

4. Results and Discussions 

4.1  Assumptions and parameter settings 

In investigating the effects of integrating the 

EVCS and PVs in the Tanzanian power systems, 

the following assumptions were considered:  

(i) In this study, the placement considers the 

charging station locations and the optimal 

number of vehicles to be charged 

simultaneously.  

(ii) When considering the simultaneous 

placement of multiple EVCSs, no multiple 

EVCS should be placed in the same location.  

(iii) The minimum and maximum number of 

vehicles per charging station were arbitrarily 

chosen from 0 to 100.  

(iv) The capacity of vehicles is 2.5kW, which 

aligns with [18]. 

In all cases with optimized results, the proposed 

SOS, GWO, and SOS algorithms were considered. 

The parameter settings for algorithms are presented 

in Table 2. The algorithm incorporated an 

ecosystem comprising 30 organisms that ran for 

200 iterations. All Simulations were carried out 

using MATLAB 2021b on a 3.80 GHz, 4-core i7 

computer with 16 GB RAM. 

Print Solution

Start

Initialization: Number of EVCS, Size of ecosystem (ecosize), Load 
Network Data 

current_iteration<maximum_iteration 

i<ecosize

Evaluate Organism using procedures in Figure 4

Update Organism by Mutualism and Penalty Mechanism in Figure 3 

Update Organism by Commensalism  and Penalty Mechanism in Figure 3 

Update Organism by Parasitism  and Penalty Mechanism in Figure 3 

Is termination criteria 

achieved?

End

Yes

Yes

NO

NO

 
Figure 5. The Proposed SOS with penalty mechanism for placement of EVCS in electrical distribution networks. 
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Table 2. Parameter settings of metaheuristic algorithms. 

SN Algorithm Parameters 

1 SOS [30] No parameter settings 

2 GWO [43] a=2 to 0 (linearly) 

3 PSO [15] w=0.9-0.4 (inertia weight) 

4.2 Results for placement EVCS and PV 

The proposed algorithms were tested for the 

placement of EVCS considering three cases: 

random allocation of EVCS, allocation of PV in the 

electrical network with existing EVCS, and 

simultaneous placement of EVCS and PV.  

The EVCS has a fixed capacity for each 

charging point in practical applications, as 

elaborated by Ferraz et al. [19], where 4.8 kW and 

2.5 kW were reported. Therefore, in this study, the 

size of the EVCS was fixed, while only the 

locations were optimized. The size of each charging 

station in this study was 2.5 kW, and the EVCS 

with 10 charging stations was considered. The 

number of charging stations was chosen based on 

the nature of the electrical network under 

investigation, as increasing the number could cause 

the network's operating parameters to exceed the 

required values. Investigating the impacts of 

mixing sizes with charging rates of 2.5 kW and 4.8 

kW is possible. Still, it does not provide any 

significant difference to the final results as per the 

focus of this study. 

A. Case 1: Random Placement of EVCS 

In the first case, the number of vehicles per 

charging station was arbitrarily fixed to 10, and 

locations were obtained randomly. In this case, the 

effects of several EVCS on the power system's 

performance were analyzed. Four scenarios were 

considered; the first involved the power system 

without any EVCS, followed by one, two, and three 

EVCSs. The voltage profile, showing the voltage 

levels at all buses for all considered scenarios, is 

presented in Figure 6 and the results for power 

losses and voltage deviation are presented in Table 

3. Figure 7 presents the results for the power loss 

profile, showing the power loss at all electrical 

network branches for all considered scenarios.  

The results in Figure 6 show that as the number 

of EVCS increases, the voltage profiles become 

worse, with the most affected nodes being nodes 96 

to 132. Those nodes are mostly affected because 

they are far from the root node. Additionally, the 

results in Table 3 indicate that as the number of 

EVCS increases, both voltage deviation and the 

minimum voltage of the system rise. Power system 

stability and quality performance require 

maintaining the voltage profile close to 1 p.u. with 

some tolerance value. Tanzania’s power system 

implements a 10% tolerance value. Therefore, 

increasing the number of EVCS shifts the voltage 

profile beyond the required operational limits, 

making the power system prone to collapse.  

 

Figure 6. Voltage profile for random placement of 

EVCS. 

The results in Figure 7 show that as the number 

of EVCS increases, the power loss profiles become 

worse, especially at branches 96 to 120. In most 

branches, the placement of three EVCSs results in 

the highest power losses, except for branches 136 

and 156, where the placement of two EVCSs yields 

the highest values. Such variations of results are 

caused by the randomness in placing the EVCS. 

Results in Table 3 show that increasing the number 

of EVCS leads to higher system power losses.  
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Figure 7. Power loss profile for random placement 

of EV. 

Case 1 demonstrates that the addition of EVCS 

increases power system load, worsens voltage 

profiles, and increases power losses. The results 

show that power system performance parameters 

worsen as more EVCS are added. Therefore, some 

mitigation measures are necessary to ensure the 

optimal integration of ECVS in Tanzania’s power 

system with minimal side effects. Some possible 

mitigation measures include network 

reconfigurations and integration of distributed 

generators. Network reconfiguration involves 

automatic restructuring of the electrical network 

through switching. In the Tanzania power system, 

especially in the secondary distribution networks, 

the infrastructure does not support reconfiguration 

due to a lack of automated switches and alternative 

feeders. The other mitigation measure includes DG, 

which has many advantages for power systems. 

Several DG types exist, including hydro, wind, and 

solar PV. Solar PV is the most commonly available 

in Tanzania, especially for secondary electrical 

distribution customers. Therefore, this study 

considers the optimal integration of solar PV in the 

electrical distribution network with EVCS, as 

elaborated in Case 2. 

B. Case 2: Fixed EVCS with Varying 

Numbers of PV 

Despite the dire need to integrate the EVCS into 

power systems, the results in Case 1 demonstrate 

that such integration can impact the power system’s 

performance. To enable the integration of EVCS 

while maintaining improved power system 

performance, Case 2 investigated the inclusion of 

PV in the power system with EVCS. The study 

considered a power system with three EVCS, with 

sizes and locations as in Case 1, due to its 

considerably worse result. Then, the effects of 

including PV and increasing the number of PV 

were considered. Five scenarios were considered: 

the first involved the power system with three 

EVCSs inherited from Case 1, followed by four 

cases which involved the placement of one up to 

four PVs. Three metaheuristic algorithms: PSO, 

GWO, and the proposed SOS algorithm in Figure 

5, were employed to determine the optimal 

locations and sizes of PV.  

Table 4 presents the results for power losses and 

voltage deviation for all considered scenarios using 

metaheuristic algorithms. The results in Table 4 

show that for the placement of 1 PV, SOS and PSO 

achieved the same results and outperformed the 

GWO. All algorithms achieved the same results 

when placing 2 PVs. For the placement of 3 PVs, 

the SOS algorithm was the best, followed by PSO. 

The convergence profile of the three algorithms is 

presented in Figure 8. The results show that the 

SOS algorithm provided the best profile, followed 

by the PSO. These results suggest that the SOS 

algorithm is highly competitive and can yield 

reliable results. 

 

Figure 8. Convergence for profile placement of 3EVCS 

and 3 PVs in Case 2.
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Table 3. Power and voltage profile for random placement of EVCS. 

Scenario Locations Power Loss(kW) Min Voltage (p.u) VD(V) 

Base _ 13.0357 0.8463 0.47152 

One EVCS 103 17.1963 0.8244 0.63342 

Two EVCS 106 and 156 22.8431 0.8123 0.75270 

Three EVCS 116, 120, and 133 61.4207 0.6169 2.82493 

Therefore, in further analyzing the effects on 

multiple PVs and variables, the results from the 

SOS algorithms were considered. The results in 

Table 4 indicate that as the number of PVs 

increases, the voltage deviation decreases, 

suggesting improved stability and system 

performance. Also, Table 4 shows that the power 

loss decreases as the number of PV increases.  

Figure 9 presents the voltage profile showing 

the voltage levels at all buses for the placement of 

one to four PVs. The results in Figure 9 show that 

the inclusion of PV can significantly improve the 

voltage profile, with greater improvement achieved 

as the number of PVs increases. Similarly, the 

results in Figure 10 show that the minimum voltage 

increases as the number of PV increases, and the 

inclusion of PV has massively improved the 

minimum voltage value. That result also shows no 

significant change in minimum voltage value 

between 3 PVs and 4 PVs, implying that for any 

power system, there is a limiting number of PVs, 

which can significantly improve the voltage.  

 

Figure 9. Voltage profile for three EVCS and 

increasing number of PVs. 

 

Figure 10. Minimum voltage values for three EVCS 

and increasing number of PVs. 

Case 3: Optimal Placement of EVCS and PV 

Case 2 considered the fixed placement of three 

EVCSs, and it was shown that increasing the number of 

PV in the power system improves voltage profiles and 

minimizes power losses. Case 3 considered the 

simultaneous allocation of EVCS and PVs using 

metaheuristic algorithms. For the case of EVCS, the 

algorithms were used to determine the optimal locations 

for fixed EVCS sizes. For the case of PVs, the 

algorithms were used to identify the locations and sizes. 

For the EVCS case, placements of one to three EVCS 

were considered. For each considered number of EVCS, 

the number of PVs was changed from one to four.  

Results for the optimal placement of three EVCSs 

with varying numbers of PVs using three metaheuristic 

algorithms are presented in Table 5. The results show 

that for the placement of 1 PV and 2 PVs, the SOS 

achieved the best power loss and voltage deviations, 

followed by the PSO. In placing 2 PVs, the PSO 

produced the best power loss and voltage deviations, 

followed by the SOS. However, the EVCS placement 

results for PSO and GWO show that two EVCS were 

placed at the same locations, which violates the goals of 

placing the EVCS at three different locations and the 

assumption (ii) of this study. The SOS algorithm 
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provided distinct locations for each placement case due 

to the incorporation of penalty mechanisms. The 

convergence profile of the three algorithms is presented 

in Figure 11. The results show that the PSO algorithm 

provided the best profile, followed by the SOS. 

Therefore, the results from the SOS algorithm were 

considered for further analysis of the optimal placement 

of EVCS in the presence of PVs. 

The findings indicate that increasing the number of 

PVs reduces power loss. When comparing Case 2 and 

Case 3, the power loss and voltage deviation in Table 5 

(Case 3) are lower than those in Table 4 (Case 2) for all 

scenarios. These outcomes demonstrate that the optimal 

placement of EVCSs and PVs provides the best results 

and can be effectively achieved using metaheuristic 

algorithms. 

Figure 12 presents the minimum voltages for all 

considered scenarios. Figures 13, 14 and 15 present the 

voltage profiles for different numbers of PVs in the 

optimal placement of 1, 2 and 3 EVCSs, respectively. 

The results in Figure 13 show that for all considered 

numbers of EVCS, there is a significant change in 

minimum voltage between One PV and the rest of the 

scenarios. The changes in minimum voltage values are 

not very significant from two to four PV placements. 

The results in Figures 13, 14, and 15 show the worst 

voltage profile for placement of one PV in all considered 

scenarios. The worst voltage values are observed 

starting from node 141 to the last node in all considered 

scenarios. Figure 16 presents the results for power losses 

for optimal placement of EVCS and PV for all 

considered numbers of EVCS. The results in Figure 16 

show that the power losses decrease with the increase in 

the number of PVs. Also, there are significant changes 

in power losses between One PV scenario and the rest.  

Case 3 examined twelve different combinations of 

EVCS and PV placements. The proposed algorithms 

identified the optimal locations for EVCSs and PVs in 

each scenario while voltage deviations and power losses 

were calculated.  

 

 

Figure 11. Convergence for profile optimal placement 

of 3 EVCS and 3 PVs in Case 3. 

 

Figure 12. Minimum voltage values for optimal 

placement of EVCS and PV. 

 

Figure 13. Voltage Profiles for optimal placement of 1 

EVCS and different number of PVs. 

 

Figure 14. Profiles for optimal placement of 2 EVCS 

and different number of PVs. 
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Figure 15. Profiles for optimal placement of 3 EVCS 

and different number of PVs. 

 

Figure 16. Power Losses for optimal placement of 

EVCS and different number of PVs. 

5. Conclusion and Recommendations 

This study explores the effects of integrating the 

EVCS into the electrical distribution networks, and 

investigates the role of PV systems in minimizing power 

losses and voltage deviations. Three cases were 

analyzed: (1) random placement of EVCS alone, (2) 

inclusion of PV systems in networks incorporated with 

EVCS, and (3) optimal placement of both EVCS and PV 

systems. The symbiotic organism search (SOS) 

algorithm, enhanced with penalty mechanisms, was 

utilized to optimize the placements. The symbiotic 

organism search (SOS) algorithm modified with penalty 

mechanisms was used to optimize the placements. The 

results show that integrating EVCS alone increases 

power losses and voltage deviations, which may 

lead to revenue losses and collapse the power 

systems. This effect is more pronounced with the 

increase in the number of EVCS. However, 

incorporating PV systems significantly enhances 

the performance and stability of the power system 

by reducing power losses and voltage deviations, 

with greater benefits observed as the number and 

capacity of PV systems increase. Additionally, the 

study reveals that considering the simultaneous 

optimal placement of EVCSs and PV systems is 

more advantageous than adding PVs to power 

systems already equipped with EVCSs. 

In this study, power loss and voltage deviations 

were considered functions; however, in the optimization 

algorithm, the power loss function was optimized, and 

the voltage deviation was utilized in the analysis. 

Additionally, other factors can be considered when 

incorporating EVCS into power systems, such as PV 

installation costs, power system reliability indices, and 

dynamic network reconfigurations.

Table 4. Power loss and voltage profiles for three EVCS and an increasing number of PVS. 

DG Algorithm Location Size (kW) Power loss (kW) VD (V) 

3 EVCS Random 116 25 61.4207 2.82493 

 120 25   

 133 25   

1 PV SOS 118 100.0000 5.2648 0.03870 

 GWO 118 99.6780 5.2704 0.03925 

 PSO 118 100 5.2648 0.03870 

2 PV SOS 136 67.0181 2.5849 0.01175 

 118 100.0000   

 GWO 136 66.8171 2.5829 0.01157 

 118 100.1223   

 PSO 136 67.0181 2.5849 0.01175 
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Table 5: Result for optimal placement of 3 EVCS and different number of PVs. 

DG Algorithm EVCS Locations PV Location PV Size Power loss (kW) VD(V) 

1 PV SOS 117, 82, 83 117 81.2418 4.2822 0.02899 

  GWO 117, 82, 132 117 81.2418 4.5982 0.03277 

  PSO 82, 95, 97 117 57.9440 4.6651 0.02902 

2 PV SOS 82,140,117 116 84.1887 2.0043 0.00329 

    140 92.6288   

  GWO 82, 95, 117 117 57.85745 2.4063 0.00546 

   137 62.2746   

 PSO 82, 95, 117 117 81.2419 2.0290 0.00570 

   137 63.1041   

3 PV SOS 122 123 62.5974 1.5655 0.00637 

   105 136 65.9143     

   84 106 55.6428   

 GWO 82, 82, 159 83 13.5203  2.0151 0.00606 

   117 56.1978   

   136 66.7436   

 PSO 109, 136, 136 109 58.7809 1.55680 0.00374 

   125 30.9604   

   136 71.1139   

Therefore, future research may include other 

factors in the analysis or formulate a multi-

objective function, which evaluates more than one 

function simultaneously. In this study, a modified 

symbiotic organism search (SOS) algorithm has 

been applied; future research may explore the 

effects of EVCS integration using other 

metaheuristic algorithms and investigate the 

computational complexity of the algorithm. This 

study revealed that the EVCS can be integrated into 

Tanzania’s power system by including PV systems. 

The proposed algorithm can be used to suggest the 

optimal placement of EVCS and PV, minimizing 

power loss and voltage deviations, thereby 

enhancing the reliability and stability of the 

distribution network. However, upgrades to 

Tanzania’s power distribution system network are 

required to include PV systems, as it was designed 

for one-way power flow. Furthermore, to 

accommodate the rapid adoption of EVs, effective 

policies should be implemented to address key 

issues, including taxation and the development of 

charging infrastructure. 
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