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1. Introduction 

Face recognition is a part of pattern recognition 

applied to identify or confirm individuals’ identities 

using their faces. Face recognition systems can be 

used to identify individuals in photos, videos, and 

in real-time [1]. Face recognition involves several 

key processes. First, image acquisition captures 

facial images using devices like cameras. Next, 

face detection identifies and locates faces within 

these images. Following this, alignment 

standardizes the orientation and scale of the 
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Abstract 

The advancement of face recognition technologies has been pivotal in 

various applications, from security systems to personalized user experiences. 

There are significant efforts already devoted to solving challenges of 

multimodality and pose variation in face recognition. Some studies focus on 

multimodality but pose-invariant, and other studies focus on pose variation 

but single modality. Despite significant progress, various face recognition 

algorithms do not consider both multimodality and pose variation constraints 

in their proposed methods. Recognizing face images presented both in a 

different modality and in a different pose presents serious challenges to 

current algorithms. This paper proposes an algorithm that combines the 

strengths of deep learning with decision trees to improve face recognition 

performance across modalities and poses in constrained and unconstrained 

environments. This hybrid approach leverages the representational power of 

deep learning and the interpretability and simplicity of decision trees. The 

findings indicate significant improvements over existing methodologies, 

particularly in challenging conditions like when multimodality and pose 

variation constraints are compounded together in the input face images in 

both constrained and unconstrained environments. The proposed algorithm 

not only addresses the limitations of current face recognition systems but also 

offers scalable, efficient solutions suitable for real-world applications. 
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detected faces. Feature extraction then identifies 

distinctive facial features. These features are 

subsequently compared against a database in the 

face matching step using algorithms to measure 

similarity. Finally, decision making determines 

identity based on these comparisons. Face 

recognition is one of the most successful 

applications in computer vision for analyzing 

images to obtain effective information and 

understanding of images [2]. Face recognition has 

numerous applications in image analysis, security, 

surveillance, law enforcement, and other areas. 

Face recognition across modalities refers to 

matching face images across different imaging 

domains [3]. Face recognition for varying poses 

refers to recognizing face images presented in 

different poses [4]. In the context of this study, face 

recognition across modalities and poses refers to 

recognizing face images presented both in a 

different modality (different sensors: visible 

images, near-infrared images, thermal images, and 

computerized facial sketches) and in a different 

pose. A constrained environment is one in which 

one can control the parameters (lighting, 

background, camera angle, pose, and other factors) 

of the input images, while an unconstrained 

environment is one in which one has little or no 

control over such parameters [5]. Recognizing 

human faces across modalities and poses, both in 

constrained and unconstrained environments, has a 

great potential in surveillance and security 

applications dealing with uncooperative subjects.  

There are significant efforts already devoted to 

solving challenges of multimodality and pose 

variation in face recognition. Some studies focus on 

multimodality but pose-invariant [3, 6-8], and other 

studies focus on pose variation but single modality 

[9-15]. Despite recent significant advances in the 

field of face recognition, various face recognition 

algorithms do not consider both multimodality and 

pose variation constraints. Recognizing face 

images presented both in a different modality and 

in a different pose presents serious challenges to 

current algorithms. This challenge is compounded 

by variations in illumination, expression, gesture, 

and occlusion. Addressing challenges for 

multimodality and pose variations together as one 

problem and not as separate problems is extremely 

important for surveillance, applications dealing 

with uncooperative subjects, and security 

applications. 

This paper addresses the challenges of 

multimodal and pose variation combination in face 

recognition. Researchers taking this route face 

several difficulties, including the resource intensive 

nature of gathering diverse multimodal data and the 

challenge of integrating information from different 

modalities effectively and ensuring that the model 

performs well across various poses. Additionally, 

Training complexity arises as multimodal models 

often require specialized architectures. Choosing 

appropriate metrics for evaluating the performance 

of multimodal and pose variation combination is 

also a critical and complex task. 

In face recognition, various types of decision 

trees can be used to enhance performance and 

interpretability. Traditional decision trees are 

simple and intuitive, splitting data based on feature 

values but are often prone to overfitting. Random 

Forests (RF) mitigate this by constructing multiple 

trees and aggregating their predictions, making 

them robust and effective for high-dimensional 

data, which is common in face recognition tasks. 

Gradient Boosting Decision Trees (GBDT) build 

trees sequentially, with each tree correcting errors 

from the previous ones, leading to high predictive 

accuracy. Variants of GBDT like Dropouts meet 

Multiple Additive Regression Trees (DART) and 

Gradient-based One-Side Sampling (GOSS) 

incorporate techniques to improve performance and 

efficiency. DART integrates dropout mechanisms 

from neural networks to prevent overfitting, 
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whereas GOSS selects data subsets based on 

gradient information to enhance speed. 

This paper proposes an algorithm that combines 

the strengths of deep learning with decision trees to 

improve face recognition performance across 

modalities and poses in constrained and 

unconstrained environments. This hybrid approach 

leverages the representational power of deep 

learning and the interpretability and simplicity of 

decision trees. The objective of this approach is to 

handle complex, high-dimensional data efficiently 

while providing clear, rule-based decisions. The 

benefits include enhanced interpretability, 

flexibility, and the potential for reduced overfitting 

[16, 17]. However, challenges such as increased 

computational complexity and careful optimization 

of all components must be managed. The proposed 

algorithm represents a promising direction in 

machine learning, balancing complexity and 

transparency in decision making processes. 

Unlike traditional approaches that focus solely 

on deep learning or decision trees, this work is 

unique in its integration of deep learning with 

decision trees to address the challenges of 

multimodal and pose variation combination in face 

recognition, an area that has been largely 

unexplored due to the inherent challenges it 

presents. The deep learning component ensures 

robust feature extraction from diverse and complex 

image data, whereas the decision trees component 

provides a structured and an interpretable 

classification process. Analytically, this synergy is 

justified as it combines the high-dimensional 

feature representation power of neural networks 

with the transparent and rule-based classification of 

decision trees, thus reducing overfitting and 

enhancing generalizability. Our work bridges the 

gap between deep learning and interpretable 

models, making it a valuable contribution to the 

field of face recognition. Moreover, our analysis 

using multiple datasets from both constrained and 

unconstrained environments demonstrates that the 

proposed algorithm significantly improves 

recognition performance under challenging 

conditions such as multimodal and pose variation 

combination, showcasing its robustness and 

practicality. 

The performance of the proposed algorithm is 

evaluated using Precision, Recall, F1 score, 

Accuracy, and Area Under the Curve (AUC) - 

Receiver Operating Characteristics (ROC) curve 

performance evaluation metrics. Precision is the 

number of true positives divided by the sum of true 

positives and false positives. If a model has a 

precision value of 0.5 it means when it predicts a 

positive case, it is correct 50% of the time. Recall 

is the number of true positives divided by the sum 

of true positives and false negatives. If a model has 

a recall value of 0.25 it means it correctly identifies 

only 25% of all positive cases. The F1 score is the 

harmonic mean of precision and recall taking both 

metrics into account. If you want to create a 

balanced classification model with the optimal 

balance of recall and precision, then try to 

maximize the F1 score. Accuracy is the ratio of 

correct predictions to total predictions made. When 

dealing with skewed datasets, accuracy is not the 

preferred performance evaluation. AUC - ROC also 

written as Area Under the Receiver Operating 

Characteristics (AUROC) is one of the most 

important performance evaluation metrics for 

classification problems. AUC is the degree or 

measure of separability and ROC is a probability 

curve. The best model has an AUC near 1, which 

means it has a good measure of separability. When 

AUC is 0.7, it means there is a 70% chance that the 

model will be able to distinguish between the 

positive class and the negative class. 

2. Related Works 

Cheema et al. [3] proposed a unified end-to-end 

Cross-Modality Discriminator Network (CMDN) 

for Heterogeneous Face Recognition (HFR), which 
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matches face images across different imaging 

domains (visible-thermal, visible-infrared, and 

visible-sketch). The CMDN uses a Deep Relational 

Discriminator module to learn deep feature 

relations and extract modality-independent 

embedding vectors. The CMDN is optimized using 

a novel Unit-Class Loss that leads to higher 

stability and accuracy compared with other metric-

learning loss functions. The proposed method 

achieves a Heterogeneous Face Recognition Rank-

1 accuracy of 93.6% on UND-X1, 91.6% on SFD, 

97.0% on TUFTS, 99.3% on USTC-NVIE, and 

99.2% on CASIA NIR-VIS 2.0 datasets.  

He et al. [7] proposed the Wasserstein 

convolutional neural network (WCNN) to handle 

near-infrared and visual face image recognition. 

The WCNN trains low-level layers using visual 

images and splits high-level layers into three parts: 

near-infrared (NIR), visual (VIS), and NIR-VIS 

shared. The WCNN showed improved performance 

compared to current state-of-the-art methods when 

evaluated on three NIR-VIS face recognition 

datasets.  

Ghosh et al. [8] proposed the Subclass 

Heterogeneity Aware Loss (SHEAL) to tackle 

cross-modality face recognition. The SHEAL 

function trains deep neural networks for cross-

spectral and cross-resolution recognition. When 

tested on four databases, the SHEAL function 

achieved outstanding results in both homogeneous 

face recognition and in the challenging scenario of 

cross-spectral cross-resolution recognition. 

Ullah et al. [9] proposed a deep learning-based 

real-time framework for recognizing human faces 

in CCTV images. The framework achieved 

recognition accuracy of over 90% with minimal 

computing time.  

Liang [10] proposed an unrestricted face 

recognition algorithm for recognizing faces in 

unrestricted environments. The algorithm 

demonstrated better recognition speed and 

recognition rate of 98.19% on LFW (Labeled Faces 

of the Wild), 92.20% on MegaFace, and 99.52% on 

CASIA-WebFace datasets. 

Ye et al. [6] proposed a modality-aware 

collaborative ensemble learning method for visible 

thermal person re-identification, where pedestrian 

images captured by different cameras (visible 

during the day and thermal at night) need to be 

matched. The proposed method uses a middle-level 

sharable two-stream network to handle feature-

level discrepancies. In classifier level, both 

modality-specific and modality-sharable identity 

classifiers are introduced. When tested on two 

cross-modality datasets, the proposed method 

achieves Rank-1/mAP accuracy of 51.64%/50.11% 

on SYSU-MM01 dataset, and 72.37%/69.09% on 

RegDB dataset. 

Mostofa et al. [18] proposed a method for face 

recognition across poses by using pose as auxiliary 

information. Instead of frontalization or 

disentangling pose information, the authors 

introduce a pose attention block that guides feature 

extraction from profile faces. When tested on both 

constrained and unconstrained benchmarks 

including Multi-PIE (Multi Pose, Illumination, 

Expressions) dataset, CFP (Celebrities in Frontal-

Profile) dataset, and IJB-C (IARPA Janus 

Benchmark-C) dataset, the results indicate that the 

proposed method significantly improves face 

recognition performance, especially for profile-to-

frontal face matching, compared to state-of-the-art 

methods. 

3. 3. Proposed Algorithm  

This study used an experimental research 

design. The method involves a two-stage process: 

feature extraction using deep learning and 

classification using decision trees. The deep 

learning component extracts high-dimensional 

features from facial images, while the decision trees 
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classify these features into distinct identity classes. 

The algorithm consists of two parts: the 

Multimodality and Pose Variation Discriminator 

Network (MPVDN) for deep learning-based 

feature representation, and the Decision Trees 

Discriminator (DTD) for making interpretable 

decisions based on these representations. The 

MPVDN is expressed as a function F that maps 

input image pair X to a similarity distance vector V. 

V = F (X ; θ) 

where X is the input image pair, V is the similarity 

distance vector, F represents the MPVDN, and θ 

denotes the parameters of the MPVDN. 

The MPVDN functions by generating a vector 

V of similarity distances for a given pair of images. 

The computation of similarity distances between 

images in a pair typically employs mathematical 

and statistical models to evaluate and quantify the 

similarity metrics. These models may include, 

among others, Euclidean distance, Cosine 

similarity, Structural Similarity Index (SSIM), or 

more complex neural network-based 

configurations  that extract and compare deep 

features of the images.  The choice of the method 

for computing similarity distances depends on the 

specific requirements of the application, including 

the level of sensitivity needed to detect differences, 

the computational resources available, and the 

nature of the images themselves (e.g., size, quality, 

and domain-specific characteristics). The outcome 

of this process is quantitative measures of 

similarity. 

The study employed neural network-based 

configurations to computing the vector V of 

similarity distances for each image pair. The 

computational environment was equipped with T4 

GPU and 13.6 gigabytes of Random Access 

Memory (RAM). There is a notable variance in 

processing times across different neural network-

based configurations. The processing times vary 

not just with the neural network-based 

configurations but also with the dataset being used. 

This indicates that the dataset characteristics (such 

as image resolution, diversity of face orientations, 

and lighting conditions) can significantly influence 

processing speed. The dimensionality of vector V is 

directly proportional to the number of neural 

network-based configurations  applied. The study 

systematically varied the dimensionality of this 

vector. The underlying hypothesis was that 

increasing the diversity and number of these neural 

network-based configurations  would correlate with 

enhanced face recognition performance. The 

similarity distance vector V was expanded to 

explore its impact on the algorithm's performance. 

The most extensive configuration tested employed 

105 distinct neural network-based configurations. 

This specific configuration yielded a similarity 

distance vector with a dimensionality of 105. 

The neural network-based configurations used 

in generating the vector V of similarity distances for 

each pair of images were chosen from academic 

and commercial studies whose structures and pre-

trained weights have been shared publicly or are 

available from the open-source community. The 

decision to use neural network-based 

configurations, specifically those whose structures 

and pre-trained weights are publicly shared or 

available from the open-source community, reflects 

a commitment to leveraging cutting-edge 

technology as well as facilitating reproducibility 

and validation of the study's findings. This open-

source approach not only enhances the study's 

credibility but also contributes to the broader 

academic and technical communities by building 

upon publicly available resources. 

In the context of computing similarity distances 

between images, the preliminary step involves the 

generation of image pairs. Image pairing can be 

systematically executed through various 

methodologies, including, but not limited to, 
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manual selection, algorithmic matching based on 

metadata, or employing machine learning models 

that understand and categorize images based on 

their visual content. The study generated image 

pairs through algorithmic matching based on 

metadata. The computational environment was 

equipped with 54.8 gigabytes of RAM, 225.89 

gigabytes of disk storage, and an Intel(R) Xeon(R) 

Central Processing Unit (CPU) operating at 2.20 

GHz. 

The DTD is expressed as a function G that maps 

the similarity distance vector V to a decision Y. 

Y = G (V ; R) 

where V is the similarity distance vector, Y is the 

decision output, G represents the DTD, and R 

denotes the decision rules derived during the 

training of the decision tree. 

The input to DTD is the similarity distance 

vector V. This vector is obtained from MPVDN, 

where V= [v1, v2, ..., vi, ..., v105] represents the 

computed similarity distances for a given pair of 

images. Each component vi of V is a scalar value 

representing the similarity score resulting from one 

neural network-based configuration. 

During the training phase, the DTD was 

exposed to a diverse dataset S that includes face 

images across different modalities (visible, near-

infrared, thermal, and computerized facial 

sketches) and poses. This exposure enables the 

DTD to derive robust decision rules. This process 

is represented as optimizing a loss function L, 

where L = Loss (Y, Ytrue ), with Ytrue being the true 

classification labels for the training samples. The 

optimization is subject to constraints C that reflect 

the specific requirements of the deployment 

environment, hence L(S;θ)→ minθ∈C, where θ 

denotes the parameters of the DTD and → minθ∈C 

means that we want to find the parameters (θ) 

within our constraints (C) that will give us the 

lowest possible score on the loss function L. The 

adaptation of the DTD to specific environmental 

constraints is essential for its effective deployment. 

The study leveraged the computational 

resources available to process and analyze a 

substantial dataset, resulting in the generation of 

121,300 105-dimensional vectors, which serve as 

representations of the original image pairs in high-

dimensional spaces.. This dataset was meticulously 

compiled from a random homogeneously 

distributed sample of image pairs, totaling 121,300, 

with an equal split between 60,650 positives (image 

pairs belonging to the same identity)  and 60,650 

negatives (image pairs belonging to different 

identities). The sources of these image pairs were 

carefully selected to include both constrained and 

unconstrained environments, utilizing images from 

the Extended Yale Face Database B and the Tufts 

Face Database for constrained settings, alongside 

the VGGFace2 dataset and the Labeled Faces in the 

Wild Database for unconstrained environments 

(Table 1).  

This approach ensures a balanced 

representation of conditions in the sample. A 

homogeneous sample, by definition in this context, 

refers to a dataset that maintains an equal number 

of positive and negative instances, which is crucial 

for eliminating bias in machine learning, 

particularly in the domain of face recognition 

where balanced datasets can significantly impact 

the accuracy and fairness of the outcomes. 

Table 1. The distribution of the generated 121,300 105-

dimensional vectors. 

Datasets Positives Negatives Total 

Constrained 

environments 

Extended 

Yale B 
12,750 12,750 25,500 

Tufts 4,850 4,850 9,700 

Unconstrained 

environments 

VGGFace2 16,350 16,350 32,700 

LFW 26,700 26,700 53,400 

Total 60,650 60,650 121,300 
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The random homogeneous sample was split 

into 89% (107,954 image pairs) homogeneous 

training set and 11% (13,346 image pairs) 

homogeneous testing set. To prevent overfitting, 

the training set was further split into a 90% (97,154 

image pairs) homogeneous training set and a 10% 

(10,800 image pairs) homogeneous validation set. 

By using a validation set, the DTD's performance 

can be assessed on independent data, allowing for 

early detection of overfitting and adjusting the 

DTD's parameters as needed. All data splits were 

random to ensure that the training, validation, and 

testing sets were representative of the underlying 

population.  

However, the ratio of the training and validation 

sets can have an impact on the DTD's performance. 

If the validation set is too small, it may not provide 

a representative sample of the data and may not 

accurately reflect the DTD's performance on new, 

unseen data. On the other hand, if the validation set 

is too large, it may leave too little data for training, 

which could lead to underfitting, where the DTD 

fails to capture the underlying patterns in the data. 

Ultimately, the ideal ratio of training and validation 

sets will depend on the size and nature of the data, 

as well as the specific requirements of the task at 

hand. In the case of this study, the specific ratio of 

90% training and 10% validation data was chosen 

to balance the need for a large enough training set 

to learn from, with the need for a representative 

validation set to prevent overfitting. 

The Optuna framework was used to tune the 

following hyperparameters in DTD: feature 

fraction (0.5979122703220067), number of leaves 

(209), bagging fraction (0.9253614353373035), 

bagging frequency (12), regularization factors 

(lambda_l1: 1.2665055161513616 and lambda_l2: 

5.458331618514055e-06), minimum child samples 

(43), and seed (4924485674646214656). Optuna is 

an open-source framework that can be used to 

optimize hyperparameters using the Tree-

structured Parzen Estimator (TPE) algorithm, a 

Bayesian optimization method balancing 

exploration and exploitation. 

The proposed algorithm is expressed as a 

composite function H: 

H (X ; θ, R) = G (F (X ; θ) ; R) 

where X is the original input image pair, H 

represents the proposed algorithm, F and G 

represent the MPVDN and DTD, respectively, and 

θ and R denote the parameters of the MPVDN and 

the decision rules of the DTD, respectively. 

Flowchart of the Proposed Algorithm: 

1. Input Image Pair (X) 

• Two images are fed into the algorithm as 

input. 

2. MPVDN Processing (F (X ; θ)) 

• The images are passed through the 

MPVDN, which computes a similarity 

distance vector V where V= [v1, v2, ..., vi, ..., 

v105] represents the computed similarity 

distances for a given pair of images. Each 

component vi of V is a scalar value 

representing the similarity score resulting 

from one neural network-based 

configuration. 

• MPVDN employs mathematical and 

statistical models (Euclidean distance, 

Cosine similarity, Neural network-based 

configurations) to compute similarity 

distances between images in a pair. 

• The output of the MPVDN is a similarity 

distance vector V= [v1, v2, ..., vi, ..., v105] that 

represents the relationship between the 

input images. 

3. DTD Processing (G (V ; R)) 

• The similarity distance vector V= [v1, v2, ..., 

vi, ..., v105] is input into the DTD, which 

applies decision rules R to classify the 

image pair. 
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• The decision rules R are derived from the 

training of the decision tree and determine 

how the classification is performed. 

• The final output is the classification 

decision Y, indicating whether the images 

match or not. 

4. Experimental Results  

The results of the experiments are promising, as 

the algorithm achieved state-of-the-art performance 

in terms of Precision, Recall, F1 score, Accuracy, 

and AUC–ROC curve to variations in modalities 

and poses. The empirical analysis reveals a positive 

correlation between the dimensionality of the 

similarity distance vector and the performance 

metrics. Specifically, as the dimensionality 

increases, notable improvements are observed 

across several performance metrics (Table 2). 

While the overall trend is positive, the 

incremental gains in performance metrics become 

less pronounced as dimensionality reaches higher 

levels (notably beyond 70 dimensions). This 

suggests the presence of a point of diminishing 

returns, where additional dimensions add less value 

to the algorithm’s predictive capabilities, 

potentially increasing computational costs without 

significant performance improvement. The AUC 

consistently increases with dimensionality, 

indicating that the algorithm’s ability to distinguish 

between classes improves as more dimensions are 

Table 2. Correlation between the dimensionality of the 

similarity distance vector (Dim of Vector V) and the 

performance metrics. 

Dim of 

Vector 

V 

Precision Recall 
F1 

score 
Accuracy AUC 

1 90.25% 81.03% 85.39% 86.14% 91.16% 

3 89.69% 85.76% 87.68% 87.95% 94.18% 

5 90.63% 87.14% 88.85% 89.07% 95.38% 

15 94.41% 91.38% 92.87% 92.99% 98.07% 

35 95.48% 93.15% 94.30% 94.37% 98.83% 

70 95.41% 93.06% 94.22% 94.29% 98.82% 

105 95.66 % 94.77 % 95.21 % 95.24 % 99.19 % 

added. This pattern underscores the importance of 

dimensional complexity in enhancing algorithm 

discriminative power. 

Both precision and recall improve in tandem as 

dimensionality increases. This balanced 

improvement is crucial, as it indicates that the 

algorithm is not only returning more relevant 

results (precision) but is also increasingly capable 

of identifying a higher proportion of actual 

positives (recall) without disproportionately 

favoring one metric over the other. There is a strong 

positive correlation between dimensionality and the 

F1 score, suggesting that the harmonic mean of 

precision and recall benefits significantly from 

increased dimensional complexity. This correlation 

is particularly relevant in scenarios where a balance 

between precision and recall is essential for 

algorithm performance. While both accuracy and 

AUC improve with increased dimensionality, the 

growth rate of AUC is particularly noteworthy. 

This implies that dimensionality has a more 

pronounced effect on the algorithm's ability to rank 

predictions effectively across different thresholds, 

a critical aspect of performance in many 

applications. 

A very high positive correlation exists between 

recall and the F1 score, indicating that the ability to 

correctly identify true positives is a strong driver of 

the overall performance balance (F1 score). The 

correlation between the F1 score and accuracy is 

also very high, indicating that higher F1 scores 

typically lead to higher accuracy. The correlation 

between precision and accuracy is positive, 

suggesting a moderate relationship where higher 

precision may lead to higher accuracy. 

The  DTD was evaluated using various 

configurations to determine the optimal 

configuration. The configurations tested included 

GBDT, DART, GOSS, and RF. The results of these 

experiments indicated that the GBDT configuration 

consistently outperformed the other configurations. 
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GBDT demonstrated superior performance in terms 

of F1 score, which measures the balance between 

precision and recall, Accuracy, which reflects the 

overall correctness of the predictions, and AUC, 

which assesses the algorithm’s ability to distinguish 

between positive and negative classes. While 

DART, GOSS, and RF also provided competitive 

results, they did not match the overall performance 

of GBDT. These findings underscore the suitability 

of GBDT as the optimal configuration for the DTD 

in the context of face recognition (Table 3). 

The experimental results highlight the pivotal 

role of decision trees, especially GBDT, in 

advancing face recognition technologies. GBDT 

and its variants have shown superior performance 

in classifying complex image pairs, making them 

crucial for face recognition across different 

modalities and poses in both constrained and 

unconstrained environments. 

Table 4 shows the performance of the algorithm 

based on the MPVDN’s configuration that yielded 

a similarity distance vector with a dimensionality of 

105 for each pair of images. With 6,386 true 

negatives (TN) and 6,324 true positives (TP), the 

algorithm effectively distinguishes between non-

matching and matching pairs of images. The 

relatively low number of false positives (FP=287) 

and false negatives (FN=349) further underscore 

the algorithm's robustness in making 

classifications. The precision (95.66%) and recall 

(94.77%) metrics are both higher, indicating a 

strong correlation between the algorithm’s ability 

to correctly identify TP and minimize FN. 

 

Table 3. Performance of the algorithm based on 

different DTD configurations. 

 Precision Recall F1 

score 
Accuracy AUC 

GBDT 95.66% 94.77% 95.21% 95.24% 99.19% 
DART 95.74% 94.64% 95.18% 95.21% 99.18% 
GOSS 95.59% 94.55% 95.07% 95.09% 99.17% 
RF 94.75% 92.52% 93.62% 93.70% 98.63% 

Table 4. Performance of the algorithm based on 

similarity distance vector, V, with a dimensionality of 

105. 

Confusion 

Matrix 
[
6386 287

349 6324
]   

Precision 95.66 % 

Recall 94.77 % 

F1 score 95.21 % 

Accuracy 95.24 % 

AUC 99.19 % 

ROC 

Curve 

 

This balance is crucial in applications where both 

FP and FN have significant consequences, such as 

security or identity verification. The close values 

suggest the algorithm is well-tuned to maintain a 

balance between these two aspects, which is not 

always easy to achieve.  

The F1 score (95.21%) serves as a bridge 

between precision and recall, providing a single 

metric that encapsulates the algorithm's overall 

performance in terms of its precision-recall 

balance. The high F1 score indicates that the 

algorithm does not heavily favor precision over 

recall or vice versa, which is a common challenge 

in classification tasks. This suggests a well-

optimized approach to handling the trade-offs 

between identifying all relevant instances and 

ensuring the relevancy of identified instances. 

The accuracy of 95.24% indicates the 

algorithm's reliability across all predictions. This 

high level of accuracy ensures that the algorithm is 

dependable in varied scenarios, affirming its utility 

in real-world applications. 
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The AUC (99.19%) is particularly noteworthy. 

This is one of the most important performance 

evaluation metrics for classification problems. 

There is a 99.19% chance that the algorithm will be 

able to distinguish between positive class and 

negative class. It suggests that the algorithm has a 

promising ability to discriminate positive class 

from negative class. In practical terms, this means 

the algorithm can accurately rank pairs of images 

by their likelihood of being a match with few errors, 

approaching the ideal scenario. The AUC being 

significantly high indicates that the algorithm's 

performance is robust across various decision 

thresholds, which implies that its predictive 

capabilities are not confined to a specific operating 

point. This is particularly important in practical 

scenarios where decision thresholds might need to 

be adjusted based on specific requirements. 

The ROC curve is close to the top left corner of 

the plot. This position indicates excellent 

performance, where the algorithm maximizes the 

TP rate while minimizing the FP rate. 

The algorithm demonstrated high performance 

on a wider range of datasets that simulate real-

world conditions more closely with AUC values 

consistently above 95%. In constrained 

environments, the Extended Yale B dataset yielded 

an AUC of 97.56%, and the Tufts dataset followed 

closely with an AUC of 95.78%. These results 

indicate the algorithm's effectiveness in constrained 

settings. In unconstrained environments, the 

algorithm's performance was even more 

impressive. The VGGFace2 dataset resulted in an 

AUC of 98.81%, while the LFW dataset achieved 

near-perfect performance with an AUC of 99.98%. 

These datasets represent real-world scenarios with 

variations in lighting, pose, and background, 

highlighting the algorithm's robustness in handling 

diverse and challenging conditions (Table 5). 

Table 5. Performance (AUC) of the algorithm on a wider 

range of datasets that simulate real-world conditions 

more closely. 

Datasets AUC 

Constrained environments 
Extended Yale B 97.56 % 

Tufts 95.78 % 

Unconstrained environments 
VGGFace2 98.81 % 

LFW 99.98 % 

5. Practical Applications and Integration 

The proposed algorithm has significant 

potential applications in various domains such as 

law enforcement, surveillance, security, and image 

analysis. In law enforcement, the proposed 

algorithm can be used to match computerized facial 

sketches with visible, near-infrared, or thermal 

images. This could be useful in identifying suspects 

based on sketches provided by witnesses or victims, 

which is crucial for identifying suspects when only 

a sketch is available. In surveillance and security 

applications, the proposed algorithm can be used to 

recognize faces in surveillance systems dealing 

with uncooperative subjects or in security systems 

to enhance real-time monitoring by identifying 

individuals in crowded and dynamic environments, 

both during the day (visible) and at night (near-

infrared and thermal). In the field of image analysis, 

the algorithm’s ability to recognize faces across 

different modalities and poses in both constrained 

and unconstrained environments can be used to 

analyze images and extract valuable information in 

applications such as social media analysis, where 

understanding the content of images is crucial. 

However, integrating the proposed algorithm 

into existing systems may present an increased 

computational complexity challenge that could be 

mitigated by optimizing the algorithm for 

efficiency, for example, by leveraging hardware 

acceleration or developing modular and 

interoperable components that can easily integrate 

with different systems. 
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6. Conclusion 

This study has shown that by combining the 

representational power of deep learning and the 

interpretability and simplicity of decision trees, we 

can significantly enhance the performance and 

robustness of face recognition across modalities 

and poses in constrained and unconstrained 

environments. The algorithm's design handles 

complex, high-dimensional data efficiently while 

providing clear, rule-based decisions. The findings 

indicate significant improvements over existing 

methodologies, particularly in challenging 

conditions like when facial images are presented in 

a different modality and pose. The proposed 

algorithm not only addresses the limitations of 

current face recognition systems but also offers 

scalable, efficient solutions suitable for real-world 

applications.  

Despite the inherent complexities and the 

increased computational demands, the outcomes of 

this study not only contribute valuable insights into 

the field of computer vision but also pave the way 

for more secure and reliable biometric recognition 

and surveillance systems in the future. The 

proposed algorithm represents a promising 

direction in machine learning, balancing 

complexity and transparency in decision-making 

processes. 

Future work will focus on refining the proposed 

algorithm to further improve its effectiveness and 

efficiency, exploring the integration of additional 

modalities, such as 3D images, to further enhance 

face recognition performance under varied 

environmental conditions, and optimizing the 

proposed algorithm for deployment on devices with 

limited computational resources. 
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