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Abstract 

Managing faults in electrical secondary distribution networks is a 

challenging task given the nature, size, and complexity. Predicting 

faults before they occur helps in increasing the safety and reliability 

of the power distribution system. Various statistical and machine 

learning techniques are being used to predict different types of faults. 

This study applies classification algorithms available in the Apache 

Spark framework, through its python interface PySpark, to predict 

electrical secondary distribution network faults. The study evaluates 

and compares ten algorithms: Decision tree, Gradient-boosted tree, 

Binomial Logistic Regression, Multinomial Logistic Regression, 

Naïve Bayes, Multilayer perceptron, Random Forest, Linear Support 

Vector Machine, One-versus-rest, and Factorization machines. The 

research uses Friedman’s test followed by Nemenyi post hoc test to 

find the significance of performance differences among the 

algorithms. The results show significant differences among the 

algorithms. Gradient-boosted tree and One-versus-rest with 

Gradient-boosted tree had the best performance for binary and 

multiclass classification, respectively, while Naïve Bayes had the 

worst performance. By identifying the most effective algorithms, this 

research provides a practical reference for selecting suitable models, 

aiding in fault prediction, reducing system downtime, and optimizing 

maintenance strategies. Additionally, the results can inform the 

selection of base models for ensemble methods, further improving 

prediction accuracy.  
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1. Introduction 

Maintaining a safe and reliable Electrical 

Secondary Distribution Network (ESDN) with 

effective fault detection, identification and 

clearance have become difficult. This difficulty is 

attributed to the continuous increase in power 

demand coupled with ageing power distribution 

infrastructures that keep on increasing the size and 

complexity of the network [1-3]. Thus, effective 

fault prediction is of paramount importance to the 

management and control of ESDN for safety and 

reliability.  

If failures are known in advance, appropriate 

measures for service restoration and optimization in 

the ESDN are taken. Zhang et al. [4] argue that 

taking proper steps earlier increases reliability and 

safety, reduces maintenance time and cost, and 

extends life of assets in the power system. 

 In recent years, machine learning techniques 

have demonstrated significant potential in 

predicting faults in electrical power distribution 

systems, offering a more proactive approach 

compared with traditional methods. The 

effectiveness of these models, however, varies 

based on the algorithms used and the specific 

characteristics of the datasets. A wide range of 

classification algorithms, from linear models and 

tree-based methods to ensemble models and 

artificial neural networks, has been applied for fault 

prediction in power distribution networks. Despite 

this, there is limited research specifically targeting 

ESDN with big data processing frameworks like 

Apache Spark. While a limited number of studies 

have explored algorithm comparisons in related 

tasks in the power distribution networks, such as 

load forecasting and assessing building energy 

efficiency, it remains unclear which algorithms are 

most effective for distributed and parallel 

processing of the growing ESDN datasets. This gap 

highlights the need for comprehensive evaluations 

of various algorithms within the context of big data 

frameworks to determine their performance in 

ESDN fault prediction. 

Thus, this paper aims to address this gap by 

comparing and evaluating the classification 

algorithms supported by PySpark, the Python 

interface for the Apache Spark big data processing 

framework, to determine the most suitable 

algorithms for fault prediction in ESDN. This study 

builds on existing algorithm comparison 

frameworks and contributes to the field by 

evaluating the performance of multiple 

classification algorithms for fault prediction in 

ESDN. Statistical tests are used to determine 

significant performance differences, ensuring the 

robustness of the results. By filling the knowledge 

gap in algorithm performance for fault prediction in 

ESDN, this research provides actionable insights 

for improving system reliability and reducing 

operational risks. 

Apache Spark [5] is among the prominent open-

source big data distributed processing systems 

supporting machine learning, graph processing, 

real-time analytics, batch processing and 

interactive queries. It offers fast processing 

capability even on complex datasets due to its 

optimized query execution and in-memory caching 

mechanisms. Within the Apache Spark framework, 

PySpark offers a powerful combination of Spark’s 

distributed computing capabilities and Python’s 

vast machine learning ecosystem. While Scala and 

Java are also supported by Apache Spark, Python 

was preferred due to its widespread use in machine 

learning and its extensive library ecosystem such as 

Scikit-learn, TensorFlow, and Pandas, making it 

the most suitable choice for this study.  

The classification algorithms that were applied 

in this study are Binomial Logistic Regression 

(BLR), Multinomial Logistic Regression (MLR), 

Decision Trees (DT), Random Forest (RF), 

Gradient-Boosted Tree (GBT), Multilayer 

mailto:jicts@udsm.ac.tz


 JICTS 

Makota et al. Volume 2(2) Pages 42-54 
 

44 
 

                                          2024 jicts.udsm.ac.tz  

Perceptron (MP), Linear Support Vector Machine 

(LSVM), One-vs-Rest (OVR), Naïve Bayes (NB) 

and Factorization Machines (FM). These are all 

classification algorithms available in PySpark 

3.0.3. We were particularly interested in finding out 

the usefulness of OVR, BLR, MLR, MP, NB, and 

FM since a limited number of studies previously 

applied them to predict faults in the electrical 

distribution network [6-12]. 

The performance metrics that were used to 

evaluate the classification algorithms are accuracy, 

recall, precision. and F1-Score. Additionally, 

binary classification algorithms were also 

evaluated using Area under Precision-Recall Curve 

(AUPR) and Area under Receiver Operator 

Characteristic Curve (AUROC) which are visually 

presented using Receiver Operator Characteristic 

(ROC) curve and Precision-Recall (PR) curve. 

The statistical inferences from the observed 

differences in accuracy and AUPR for multiclass 

classification and binary classification were drawn 

based on the approach proposed by Vázquez et al. 

[13] and Pizarro et al. [14] for comparing multiple 

algorithms on a single dataset. Since parametric 

conditions were not met, the accuracy and AUPR 

measures were ranked using the non-parametric 

Friedman’s test. After that, Nemenyi post hoc test 

was used to determine whether there is a statistical 

significance in rank differences. Finally, the results 

were visually presented using Demšar significance 

diagrams. 

The results of this study have practical 

implications for improving fault prediction in 

electrical distribution networks. By identifying the 

best-performing algorithms (Gradient-boosted tree 

and One-versus-rest with Gradient-boosted tree), 

these algorithms offer enhanced fault prediction 

accuracy and can serve as strong base models for 

ensemble learning, potentially improving 

predictive performance in complex scenarios. 

Integrating these techniques can reduce downtime, 

optimize maintenance, and enhance safety. 

Additionally, leveraging Apache Spark’s 

scalability advances big data applications in power 

system management for more efficient, real-time 

fault prediction. 

2. Related Work 

Roland and Eseosa [15] established a 

classification model by applying Artificial Neural 

Network (ANN) to predict incipient transformer 

faults in the distribution network. The established 

model was trained and validated using Dissolved 

Gas Analysis (DGA) data. Similarly, Sayar and 

Yüksel [16] used the same approach to predict 

power outages in the electrical distribution 

network. The established model uses hourly 

outages and meteorological data that influence 

power system failures and network health 

conditions. The model yielded performance results 

of 70.59% accuracy. 

Huang et al. [17] proposed a model for fault 

prediction in the distribution network using support 

vector machines (SVMs). The model was 

constructed and validated using historical datasets 

from distribution network management and 

monitoring systems. It demonstrated superior 

performance compared with both ANN and C4.5 

decision tree models. Similar results were obtained 

by Wang et al. [18] when predicting cascade 

failures in the smart grid. It was reported that the 

model produced prediction accuracy close to 100% 

during validation with real-time data. 

Lin et al. [19] presented a fault prediction model 

for a smart grid distribution system based on Voted 

Random Forest Algorithm (VRF). The model was 

trained and validated using distribution network 

faults logs and meteorological data. The authors 

then compared the performance of the model with 

ANN, Random Forest (RF), and SVM algorithms. 

The results indicate that the VRF model surpassed 

the performance of the other models. 
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Cai et al. [20] built a model for feeder fault 

prediction in a power distribution network. The 

proposed model was based on XGBoost, utilizing 

datasets from Fujian Electric Power in China 

collected over 17 years. The results showed that the 

proposed model is valid and efficient with an AUC 

of 0.8899. 

Stefenon et al. [21] implemented a hybrid time 

series model for fault prediction in distribution 

insulators. The model was implemented using the 

wavelet technique and long short-term memory. 

The authors then compared their model with non-

linear Auto-Regressive (NAR) and eXogenous 

input (NARX) models. The results showed that 

wavelet LSTM outperformed both NAR and 

NARX. 

Hou et al. [22] used random forest (RF) to 

predict power outage faults caused by typhoon 

disasters. They built their model using a dataset 

with 14 features from multiple sources, including 

geographical data, power grid data and 

meteorological data. The model was validated 

through a case study from typhoon “Mijiage” of 

2015 and obtained an accuracy of up to 92.44%. 

Yang [23] developed a fault prediction model 

for the distribution system based on RF and Multi-

classification Support Vector Machines (MSVM) 

using original data from the distribution network 

coupled with meteorological data. The results 

showed that the proposed method has a practical 

application value with accuracy reaching 95%. 

Relatively few studies have compared machine 

learning algorithms for various tasks in power 

distribution networks. Moradzadeh et al. [24] 

assessed machine learning methods for predicting 

heating and cooling loads in residential buildings, 

but their comparison involved only two algorithms: 

Multilayer Perceptron (MLP) and Support Vector 

Regression (SVR). Markovics and Mayer [25] 

performed a comparative analysis of machine 

learning methods for forecasting photovoltaic 

power using numerical weather predictions, 

evaluating and comparing a total of 24 algorithms.  

Ullah et al.  [26] conducted a comparative 

analysis of machine learning algorithms for 

predicting electric vehicle energy consumption. 

They employed advanced algorithms such as Light 

Gradient Boosting Machine and Extreme Gradient 

Boosting, and compared their performance to 

conventional algorithms such as Multiple Linear 

Regression and Artificial Neural Networks. Egwim 

et al. [27] carried out a comparative analysis of 

machine learning algorithms for assessing building 

energy efficiency through big data analytics, 

exploring commonly used algorithms for 

developing models to assess energy efficiency in 

buildings. Additionally, Luo et al. [28] conducted a 

performance comparison of three machine learning 

algorithms (Support Vector Regression, Long-

Short-Term Memory Neural Network, and 

Artificial Neural Network) for predicting Building 

Integrated Photovoltaic (BIPV) power production  

and multiple building energy loads simultaneously. 

In previous studies, authors primarily used 

conventional machine learning methods to predict 

faults in electrical distribution networks with small 

datasets. While some research has compared 

machine learning algorithms for various tasks in 

power distribution networks, there is a lack of 

comprehensive evaluations focused on ESDN, 

especially using big data frameworks like Apache 

Spark. Many studies overlook the advantages of 

these frameworks, which are essential for 

processing the large datasets generated in ESDN. In 

this paper, we evaluated and compared the 

performance of all the classification algorithms 

available in PySpark, the Python interface for the 

well-known big data framework Apache Spark. 

The evaluation focused on fault prediction in 

ESDN datasets, ranking the algorithms based on 

their performance. 
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3 Methods and Materials 

3.1 Data Collection  

The dataset used to assess the performance of 

the classification algorithms in this study was 

collected from the electrical secondary distribution 

network using Automatic Meter Reading (AMR). 

Additionally, the corresponding weather data of 

temperature and rainfall were obtained and 

aggregated. The dataset comprises of 105,118 

instances with a resolution of 20 minutes collected 

from January 2015 to December 2018. Table 1 

displays the description of ESDN dataset. 

3.2 Evaluation of Classification Algorithms 

The metrics used in the evaluation of 

performance for each of the classification 

algorithms are accuracy, recall, precision and F1-

Score as presented in equations (1) through (4). 

These metrics come from the four fundamental 

parameters of all the classification results, namely 

True Positive (TP), False Positive (FP), True 

Negative (TN) and False Negative (FN). TP 

indicates that the positive label is predicted 

positive, while TN means that the negative label is 

predicted negative. On the other hand, FP shows 

that the negative label is predicted positive, and FN 

shows that the positive label is predicted negative. 

 
Accuracy= 

TP + TN

TP + TN + FP + FN
 

(1) 

 
Precision = 

TP

TP + FP
 

(2) 

 

 
Recall = 

TP

TP + FN
 

(3) 

 
F1-Score =  

2 × TP

(2 × TP) + FP + FN
 

(4) 

Other metrics are area under the precision-

recall curve (AUPR) and area under the receiver 

operator characteristic curve (AUROC). AUROC 

provides a performance measure that shows the true 

positives against the false positives. Unlike 

accuracy, AUROC is threshold independent 

because it implicitly compares the base error rates 

between classifiers. Thus, AUROC is considered 

more reliable in the presence of high false-positive 

rates [29, 30]. AUPR is another threshold 

independent metric obtained from the plot of 

precision against recall. In the case of the highly 

imbalanced ESDN dataset, AUPR is said to be 

more effective and informative than AUROC [31].

Table 1. Description of ESDN Dataset. 

S/N Attribute Description 

1 Timestamp Timestamp measurements were recorded 

2 VA Voltage measurement of Phase A 

3 VB Voltage measurement of Phase B 

4 VC Voltage measurement of Phase C 

5 CA Current measurement of Phase A 

6 CB Current measurement of Phase B 

7 CC Current measurement of Phase C 

8 kVAh Apparent power measurement 

9 kVArh Reactive power measurement 

10 kWh Active power measurement 

11 Temperature Temperature measurement 

12 Precipitation Rainfall measurement 

13 Fault Target variable 
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3.3 Statistical Comparison of Classification 

Algorithms 

In this research, the hypothesis was developed 

to evaluate the performance of different 

classification algorithms available in PySpark for 

fault prediction in ESDN. The specific hypotheses 

tested are as follows: 

H0: There is no significant difference in the 

performance of the classification algorithms 

provided by PySpark for fault prediction in 

ESDN 

H1: At least one of the classification algorithms 

performs significantly better than the others for 

fault prediction in ESDN 

The rationale for this hypothesis is based on 

several factors. Firstly, the existing literature shows 

that machine learning algorithms often perform 

differently depending on the dataset and 

computational framework used. ESDN presents 

complex data challenges, which can influence 

algorithm performance, making it essential to test 

whether some algorithms outperform others. 

Additionally, not all machine learning algorithms 

are equally suited for distributed processing in big 

data environments like PySpark, and the hypothesis 

aims to identify the most effective algorithms for 

fault prediction in this context. By incorporating 

statistical tests, the study seeks to determine 

whether these differences in performance are 

statistically significant, providing practical insights 

for real-world deployment in ESDN to enhance 

reliability and safety. 

Our motivation is based on the interest in 

comparing more than two classification algorithms 

over a single data set. Studies conducted by 

Vázquez et al. [13] and Pizarro et al. [14] 

recommend ANOVA if the parametric conditions 

are met and Friedman’s test when the parametric 

conditions are not met. 

In this study, we follow the procedure provided 

by Pizarro et al. [14]. Mean AUPR and mean 

accuracy are used to compare the performance of 

the algorithms for binary-class classification and 

multiclass classification, respectively. 10-fold 

walk-forward cross-validation is performed with 

the threshold p=0.95 (95% confidence level) to 

check significance (p<0.95). We selected the non-

parametric Friedman’s test to test the null 

hypothesis because the Levene test on the 

algorithms performance results scored p-values of 

0.0028 for accuracy and less than 0.0001 for AUPR 

(α=0.05), rejecting the homoscedasticity 

assumption for ANOVA. 

Friedman’s test compares the classification 

algorithms based on the average ranks of their 

performances to show whether a statistical 

difference exists among the classification 

algorithms. The observed value of Friedman’s test 

statistic is given by 

𝑋𝐹
2= 

12

𝑛𝑘(𝑘 + 1)
∑ 𝑅𝑗

2 − 3𝑛(𝑘 + 1)
𝑘

𝑗=1
, 

(5) 

where 𝑛 is the number of blocks, 𝑘 is the number of 

treatment levels, and 𝑅𝑗 is the sum of the ranks for 

sample 𝑗. 𝑋𝐹
2 is compared with a chi-square 

distribution using 𝑘 − 1 degrees of freedom, and 

when it is large enough, the null hypothesis is 

rejected [32, 33]. 

When the null hypothesis is rejected, the post 

hoc Nemenyi test is used to compare the 

classification algorithms to identify the significant 

differences in their performances. The Nemenyi 

test uses a critical difference (CD) calculated using  

 
𝐶𝐷 = 𝑞𝛼√

𝑘(𝑘+1)

6𝑁
 ,  

 (6) 

where 𝑞𝛼 is the critical value and 𝑘 is the number 

of treatment levels. If the average ranks of two 

algorithms differ by a value larger than CD, their 

performance is significantly different [34]. 

Finally, the statistical comparison results 

obtained from Friedman’s and Nemenyi post hoc 

test are visually presented using Demšar 

significance diagrams [35]. In these diagrams, 

algorithms with no significant difference in 

performance are connected by horizontal bold 
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lines. In the significance diagram, the best-

performing algorithms are positioned on the right 

side, and the critical difference is shown above the 

same significance diagram. 

4 Results and Discussion  

This section shows the results produced by 

applying all the evaluated algorithms. Firstly, we 

present the performance evaluation results of the 

algorithms in terms of accuracy, recall, precision 

F1-Score, AUROC and AUPR for each classifier. 

Then, statistical tests to determine whether the 

results are significantly different or not are 

presented. Finally, the results are discussed in 

detail, highlighting key insights and the broader 

implications of the study. 

4.1 Performance of the Algorithms 

The performance of all evaluated algorithms for 

binary classification is presented in Table 2. The 

Gradient Boosted Tree algorithm exhibited the best 

performance among all the classifiers in all the 

evaluated metrics, followed by Decision Tree, 

Random Forest, Binomial Logistic Regression, 

Linear Support Vector Machine and Multilayer 

Perceptron. Conversely, Naïve Bayes and 

Factorization Machine demonstrated the worst 

performance of all the classifiers. Figure 1 and 

Figure 2 show the graphical representation of the 

binary classification evaluation using the ROC 

curve and PR curves, respectively. With the ROC 

curve, best performing algorithms tend to produce 

curves nearer to the top-left corner and those which 

come closer to the dashed diagonal of the ROC 

space indicate poor performance. The algorithms 

producing curves nearer to the top-right corner in 

the PR curve diagram indicate a better 

performance. 

Table 3 shows the evaluation results of the 

algorithms for multiclass classification. The OVR 

with GBT (OVR-GBT) model exhibited the best 

performance among all the classifiers in all the 

evaluated metrics. In contrast, Naïve Bayes, OVR 

with FM (OVR-FM) and Multilayer Perceptron 

demonstrated the worst performance of all the 

classifiers. 

 
Figure 1. ROC Curves for Binary Classification 

Performance Results. 

 

Table 2. Binary Classification Performance Results. 

Algorithm 
Evaluation Criteria 

Accuracy AUROC AUPR Precision Recall F1-Score 

Binomial Logistic Regression 94.67 98.11 94.19 94.70 94.67 0.9464 

Decision Tree 97.40 98.60 96.68 97.45 97.40 0.9741 

Random Forest 95.99 99.09 96.44 96.15 95.99 0.9603 

Gradient Boosted Tree 97.96 99.61 98.99 97.96 97.96 0.9796 

Multilayer Perceptron 88.60 90.17 81.77 90.70 88.60 0.8894 

Linear Support Vector Machines 94.42 97.16 90.65 94.43 94.42 0.9442 

Naïve Bayes 63.74 74.75 35.30 83.09 63.74 0.6694 

Factorization Machine 88.34 79.84 70.05 89.74 88.34 0.8732 

mailto:jicts@udsm.ac.tz


 JICTS 

Makota et al. Volume 2(2) Pages 42-54 
 

49 
 

                                          2024 jicts.udsm.ac.tz  

Table 3. Multiclass Classification Performance Results. 

Algorithm 
Evaluation Criteria 

Accuracy Precision Recall F1-Score 

Multinomial Logistic Regression 94.16 94.46 94.16 94.02 

Decision Tree 96.78 96.58 96.78 96.61 

Random Forest 95.33 95.07 95.33 95.12 

Multilayer Perceptron 86.60 86.85 86.60 85.07 

Naïve Bayes 64.37 87.13 64.37 68.52 

OVR-BLR 94.40 94.55 94.40 94.23 

OVR-FM 85.38 88.21 85.38 84.30 

OVR-GBT 97.78 97.69 97.78 97.70 

OVR-LSVM 94.17 93.84 94.17 93.92 

 
Figure 2. PR Curves for binary classification 

performance results. 

4.2 Statistical Analysis 

After evaluating the performance of the 

classification algorithms as illustrated in the 

previous section, a statistical analysis was 

conducted to test whether the differences in 

performances of the algorithms are significant. This 

research has compared the algorithms only for the 

classification evaluation measures of accuracy and 

AUPR for multiclass classification and binary 

classification, respectively. Results show that 

parametric conditions for ANOVA were not met. 

The Levene test rejected the homogeneity 

hypothesis of all the evaluation results with p-

values of 0.0028 for accuracy and less than 0.0001 

for AUPR. Thus, a non-parametric method, the 

Friedman test, was used to compare the evaluation 

results. 

Table 4 and Table 5 report Friedman’s test 

rankings of all the evaluated algorithms on the 

ESDN dataset for AUPR and accuracy. The results 

indicate that Gradient Boosted Tree has the highest 

Friedman score for binary classification, and OVR-

GBT scored high for multiclass classification. 

Oppositely, Naïve Bayes demonstrated the worst 

average ranking than all classifiers in both cases.   

The Friedman test statistics for accuracy and 

AUPR observed using equation (5) were 75.73 

(greater than 𝑥0.05,7
2 = 15.507) and 66.13 (greater 

than 𝑥0.05,7
2 = 14.067), respectively. In all cases, the 

corresponding p-value for the Friedman test was 

less than 0.001 (α = 0.05). These results reject the 

null hypothesis that all the evaluated algorithms 

perform similarly. Then, we applied the post hoc 

Nemenyi test to each evaluation criteria. 

The significance diagrams, Figure 3 and Figure 

4, illustrate the Nemenyi post hoc test results for 

AUPR and accuracy, respectively. Horizontal bold 

lines connect algorithms whose performances are 

not significantly different, and the best performing 

algorithms are presented to the right of the diagram. 

The observed critical difference values using (6) for 

accuracy and AUPR are 3.7988 and 3.3202, 

respectively.  
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Table 4. Rankings from AUPR for binary 

classification. 

Algorithm AUPR 

Binomial Logistic Regression 3.9 

Decision Tree 2.7 

Random Forest 2.6 

Gradient Boosted Tree 1.0 

Multilayer Perceptron 5.9 

Linear Support Vector Machines 5.0 

Naïve Bayes 8.0 

Factorization Machine 6.9 

 

4.3 Discussions 

The results of the statistical analysis affirm the 

observed performance trends and provide deeper 

insights into the strengths and weaknesses of the 

evaluated algorithms. GBT emerged as the best-

performing algorithms for binary classification, 

with OVR-GBT showing similar dominance in 

multiclass classification. The high rankings of these 

algorithms, as confirmed by the Friedman test, 

demonstrate their superior fault detection 

capabilities in ESDN. GBT's success can be 

attributed to its ability to enhance model accuracy 

by sequentially correcting errors, which proves 

highly effective for complex prediction tasks with 

imbalanced data. 

Table 5. Rankings from accuracy for multiclass 

classification. 

Algorithm Accuracy 

Multinomial Logistic Regression 4.3 

Decision Tree 1.9 

Random Forest 3.5 

Multilayer Perceptron 7.5 

Naïve Bayes 9.0 

OVR-BLR 4.5 

OVR-FM 7.5 

OVR-GBT 1.1 

OVR-LSVM 5.7 

 

 

 
Figure 3. Significance diagram for AUPR. 

 
Figure 4. Significance diagram for accuracy.

GBT 
RF 
DT 
BLR 

NB 
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MP 

LSVM 
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OVR-LSVM 
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Similarly, the strong performance of RF and DT 

algorithms reflects the advantages of ensemble-

based models, which aggregate multiple decision 

paths to increase predictive accuracy and 

robustness. These algorithms’ consistent 

performance across different metrics and their 

statistically significant ranking makes them viable 

alternatives where model simplicity or 

interpretability is preferred. 

The poor performance of NB and FM can be 

explained by their assumptions and limitations. NB 

relies on feature independence, which is often 

violated in complex datasets, leading to suboptimal 

results. Similarly, FM, which excels in 

recommendation systems, failed to capture the 

complexities of the fault prediction task in this 

study. 

The post hoc Nemenyi test further clarifies that, 

while GBT, DT, RF, and OVR-GBT are 

statistically similar in performance, algorithms like 

NB, FM, and MP consistently perform worse. 

These insights are critical for selecting appropriate 

algorithms for real-time fault prediction systems, 

where accuracy and computational efficiency are 

paramount. 

The findings of this study have significant 

practical implications for real-time fault prediction 

in ESDN. By identifying GBT and OVR-GBT as 

the top-performing algorithms, operators can 

confidently deploy these algorithms for reliable and 

scalable fault prediction, enhancing system 

reliability and safety. The findings can also guide 

the selection of strong candidates for base models 

in ensemble learning, which could further improve 

predictive performance in more complex scenarios. 

Conversely, the poor performance of NB indicates 

its unsuitability for this application, and it should 

be avoided. Additionally, leveraging Apache 

Spark’s scalability ensures that these algorithms 

can handle real-time processing in large networks, 

optimizing maintenance strategies and reducing 

downtime, thus advancing big data applications in 

power system management. 

Despite the promising results, this study has 

several limitations. First, the algorithms were 

evaluated on a specific dataset from ESDN 

measurements obtained from the AMR system, 

which may limit the generalizability of the findings 

to other types of networks or domains. 

Additionally, while the study focused on the 

accuracy and performance of various algorithms, 

other important factors such as computational 

complexity, and real-time scalability under 

different conditions were not fully explored. 

Furthermore, the results rely on the performance of 

Apache Spark’s implementation, which may vary 

across different big data frameworks. Future 

research could investigate the adaptability of these 

algorithms to other frameworks and scenarios, as 

well as explore hybrid approaches that combine 

multiple algorithms for enhanced performance. 

5 Conclusion 

This study evaluated the performance of ten 

classification algorithms in predicting faults within 

the ESDNs using data from AMR system. Among 

the evaluated algorithms, the GBT and OVR-GBT 

consistently outperformed other algorithms for 

binary and multiclass classification tasks, 

respectively. These algorithms demonstrated 

superior accuracy, recall, precision, and overall 

robustness, making them strong candidates for 

deployment in real-time fault prediction systems. 

Conversely, algorithms such as NB and FM 

exhibited the poorest performance and are less 

suited for this application. 

The use of Apache Spark framework enabled 

scalable and efficient processing of large datasets, 

showcasing the potential of big data frameworks in 

managing complex power system tasks. 

Furthermore, the statistical analyses confirmed the 

significance of performance differences among the 

mailto:jicts@udsm.ac.tz


 JICTS 

Makota et al. Volume 2(2) Pages 42-54 
 

52 
 

                                          2024 jicts.udsm.ac.tz  

algorithms, validating the robustness of the top-

performing algorithms. 

The findings from this study provide actionable 

insights for improving the reliability and safety of 

ESDN systems by selecting high-performing 

algorithms for fault prediction. These insights can 

also guide the selection of base models for 

ensemble learning, offering the potential to further 

improve predictive performance in more complex 

scenarios. However, the study’s limitations suggest 

that future research should focus on testing these 

algorithms in different domains, exploring hybrid 

approaches, and assessing computational efficiency 

under real-time operational conditions. 
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